- Recap: Algorithms for Single-Source Shortest Path
- All-Pairs Shortest Paths
 - Algorithm 1: Lots of Single Sources
 - Algorithm 2: Basic Dynamic Programming
 - Algorithm 3: Divide & Conquer Dynamic Programming
 - Algorithm 4: Floyd-Warshall's Algorithm

Holger Dell

- Recap: Algorithms for Single-Source Shortest Path
- All-Pairs Shortest Paths
 - Algorithm 1: Lots of Single Sources
 - Algorithm 2: Basic Dynamic Programming
 - Algorithm 3: Divide & Conquer Dynamic Programming
 - Algorithm 4: Floyd-Warshall's Algorithm

Recap

Weighted Adjacency Matrix

b	С	d	е
-9	0	0	2
0	0	3	0
0	0	0	-4
0	7	0	0
0	0	20	0

a b -9 a e 2 b a 12 b d 3 c e -4 d c 7 e d 20

Edge List

Single-Source Shortest Paths (SSSP) <u>Goal:</u> Compute the shortest paths from s to all vertices

Shortest paths from a:

dist(a, a) = 0dist(a, b) = -9dist(a, c) = 1dist(a, d) = -6dist(a, e) = -3

Path from a to e of length -3

Shortest paths from a: (0, -9, 1, -6, -3)

The *distance* dist(s, v) is the length of a shortest path from s to v.

Single-Source Shortest Paths (SSSP) Algorithms

Path from a to e

of length -3

Shortest paths from a:

(0, -9, 1, -6, -3)

- Breadth-first search (BFS): • only works if all weights are 1! • Time O(V+E)
- Dijkstra's algorithm: • works if all weights are ≥ 0 . • Time $O(E \log V)$ slower than BFS!
- **Bellman-Ford's algorithm:** • works even if there are negative weights! • Time O(EV) slower than Dijkstra!

Here we write: V = number of vertices E = number of edges

Single-Source Shortest Paths (SSSP) The Issue of Negative Cycles

- **bdcb** is a negative cycle!
- The path **abdce** has weight -3. •
- The path **abdcbdce** has weight -13.
- The path **abdcbdcbdce** has weight -23.
- . . .
- There is no *shortest* path from *a* to *e*.

Beware: The concept of "shortest paths" only makes sense if there is no negative cycle!

- Recap: Algorithms for Single-Source Shortest Path
- All-Pairs Shortest Paths
 - Algorithm 1: Lots of Single Sources
 - Algorithm 2: Basic Dynamic Programming
 - Algorithm 3: Divide & Conquer Dynamic Programming
 - Algorithm 4: Floyd-Warshall's Algorithm

All-Pairs Shortest Paths (APSP) Goal: Compute shortest paths between <u>all</u> vertices

12 a _9 d С e

b С а

а	0	-9	1
b	12	0	10
С	œ	∞	0
d	œ	∞	7
е	∞	∞	27

The goal of APSP is to compute this matrix.

Goal of AP

Compute the matrix (dist(u,v) : for all vertices u and v)

Distances can be arranged in a matrix:

Examples:

- dist(e,c)=27
- dist(c,b)=∞

Algorithm 1: Lots of Single Sources [Erickson, chapter 9.2]

How would we solve APSP with what we already know?

<u>ObviousAPSP(V, E, w):</u> for every vertex s: dist[s, .] = SSSP(V, E, w, s)

Running Time?

Algorithm

V times **BFS**

V times **Dijkstra**

V times **Bellman-Ford**

Weights	Time
none	$O(V \cdot E) = O(V^3)$
non-negative	$O(V \cdot (E \log V)) = O(V^3 \log V)$
no negative cycles	$O(V \cdot (EV)) = O(V^4)$

Challenge: Can we achieve $O(V^3)$ when the graph has negative weights?

- Recap: Algorithms for Single-Source Shortest Path
- All-Pairs Shortest Paths
 - Algorithm 1: Lots of Single Sources
 - Algorithm 2: Basic Dynamic Programming
 - Algorithm 3: Divide & Conquer Dynamic Programming
 - Algorithm 4: Floyd-Warshall's Algorithm

Dynamic Programming Recap from [Erickson, chapter 3.4]

Designing algorithms using **Dynamic Programming** takes two main steps:

- 1. Solve the problem using a recursive algorithm (This step requires creativity.)
- 2. Turn the recursive algorithm into a bottom-up iterative algorithm (This step is quite mechanical and requires little creativity.)

Challenge. How can we formulate APSP recursively?

Recursive Invariant for Distances [Erickson, chapter 9.5]

dist
$$(u, v) = \begin{cases} 0 & \text{if } u = v \\ \min_{x \to v} \left(\text{dist}(u, x) + w(x \to v) \right) & \text{otherwise} \end{cases}$$

Recursive Invariant for Distances [Erickson, chapter 9.5]

dist
$$(u, v) = \begin{cases} 0 & \text{if } u = v \\ \min_{x \to v} \left(\text{dist}(u, x) + w(x \to v) \right) & \text{otherwise} \end{cases}$$

- dist(u, v) satisfies this recursive invariant

• **Issue.** If the graph has cycles, the recursion never bottoms out!

Refined Recursive Invariant [Erickson, chapter 9.5]

• This recursive algorithm terminates!

dist(u, v, l) = length of shortest path from u to v with at most l edges.

 Dynamic Programming. Instead of recomputing dist(u, v, l) each time recursively, we store it in a table dist[u,v,l]:

dist[*,*,0] \rightarrow dist[*,*,1] \rightarrow

base cases can be initialized directly.

dist[*,*,2] ----- dist[*,*,l-1]

ShimbelAPSP(V, E, w): initialize dist[u,u,0] = 0 for all vertices u. initialize dist[u,v,0] = ∞ for all vertices u and v with u \neq v. for l from 1 to V-1: for all vertices u: for all vertices v with $u \neq v$: set dist[u,v,l] = min{ dist[u,v,l-1],

- Running time: $O(V^4)$
- Space: $O(V^3)$
- We only ever need dist[*,*,l-1] to compute dist[*,*,l], so we can simplify the algorithm and use space $O(V^2)$.

```
dist[u,x,l-1] + w(x\rightarrowv) : for all edges x\rightarrowv }
```


ShimbelAPSP(V, E, w): initialize dist[u, u, 0] = 0 for all vertices u. initialize dist $[u, v, 0] = \infty$ for all vertices u and v with $u \neq v$. for l from 1 to V-1: for all vertices u: for all vertices v with $u \neq v$: set dist[u,v,l] = min{ dist[u,v,l-1],

- Running time: $O(V^4)$
- Space: $O(V^3)$
- We only ever need dist[*,*,l-1] to compute dist[*,*,l], so we can simplify the algorithm and use space $O(V^2)$.

dist[u,x,l-1] + w(x \rightarrow v) : for all edges x \rightarrow v }

<u>AllPairsBellmanFord(V, E, w):</u> initialize dist[u,u] = 0 for all vertices u. initialize dist[u,v] = ∞ for all vertices u and v with $u \neq v$. for l from 1 to V-1: for all vertices u: for all vertices v with $u \neq v$: set dist[u,v] = min{ dist[u,v

- Running time: $O(V^4)$
- Space: $O(V^3)$
- We only ever need dist[*,*,l-1] to compute dist[*,*,l], so we can simplify the algorithm and use space $O(V^2)$.

」, dist[u,x] + w(x \rightarrow v) : for all edges x \rightarrow v }

<u>AllPairsBellmanFord(V, E, w):</u> initialize dist[u,u] = 0 for all vertices u. initialize dist[u,v] = ∞ for all vertices u and v with $u \neq v$.

for l from 1 to V-1: for all vertices u: for all vertices v with $u \neq v$: set dist[u,v] = min{ dist[u,v],

- Running time: $O(V^4)$
- Space: $O(V^2)$

```
dist[u,x] + w(x\rightarrowv) : for all edges x\rightarrowv }
```


- Recap: Algorithms for Single-Source Shortest Path
- All-Pairs Shortest Paths
 - Algorithm 1: Lots of Single Sources
 - Algorithm 2: Basic Dynamic Programming

 - Algorithm 3: Divide & Conquer Dynamic Programming Algorithm 4: Floyd-Warshall's Algorithm

Divide and Conquer Recursion [Erickson, chapter 9.6]

dist(u, v, l) = length of shortest path from u to v with at most l edges.

Divide and Conquer Recursion [Erickson, chapter 9.6]

$$dist(u, v, l) = \begin{cases} w(u \to v) \\ \min_{x} (dist(u)) \end{cases}$$

Faster Dynamic Programming using Divide and Conquer [Erickson, chapter 9.6]

$$dist(u, v, l) = \begin{cases} w(u \to v) & \text{if } l = 1\\ \min_{x} \left(dist(u, x, l/2) + dist(x, v, l/2) \right) & \text{otherwise} \end{cases}$$

• This recursive algorithm can be turned into an iterative program. • The refined program runs in time $O(V^3 \log V)$ and uses space $O(V^2)$.

- Recap: Algorithms for Single-Source Shortest Path
- All-Pairs Shortest Paths
 - Algorithm 1: Lots of Single Sources
 - Algorithm 2: Basic Dynamic Programming
 - Algorithm 3: Divide & Conquer Dynamic Programming
 - Algorithm 4: Floyd-Warshall's Algorithm

Floyd-Warshall's Recursion [Erickson, chapter 9.8]

Let us label the vertices with the numbers 1, 2, 3, ..., V.

• Examples:

valid path for $\pi(1,2,4)$

 $\pi(u, v, r) = \text{length of shortest path from } u$ to v that may only use intermediate vertices numbered $\leq r$.

invalid path for $\pi(1,3,4)$

valid path for $\pi(5,4,4)$

Floyd-Warshall's Recursion [Erickson, chapter 9.8]

• Let us label the vertices with the numbers 1, 2, 3, ..., V.

• Idea: Shortest valid path for $\pi(u, v, r)$ either goes through r or not.

 $\pi(u, v, r) = \text{length of shortest path from } u$ to v that may only use intermediate vertices numbered $\leq r$.

Floyd-Warshall's Recursion [Erickson, chapter 9.8]

$$dist(u, v, r) = \begin{cases} w(u \to v) & \text{if } r = 0\\ \min\left(dist(u, v, r - 1), \ dist(u, r, r - 1) + dist(r, v, r - 1)\right) & \text{otherwise} \end{cases}$$

intermediate nodes $\leq r$

Algorithm 3: Floyd-Warshall's Algorithm [Erickson, chapter 9.8]

$$dist(u, v, r) = \begin{cases} w(u \to v) & \text{if } r = 0\\ \min\left(dist(u, v, r - 1), \ dist(u, r, r - 1) + dist(r, v, r - 1)\right) & \text{otherwise} \end{cases}$$

- The final program runs in time $O(V^3)$.

• Dynamic Progamming. Turn this recursive function into an iterative program.

Overview of APSP Algorithms

Algorithm

V times **BFS**

V times Dijkstra

V times **Bellman-Ford**

Basic Dynamic Programming

Divide and Conquer

Floyd-Warshall's Algorithm

- Floyd-Warshall's algorithm is from 1951-1962.
- Is there a faster algorithm? Humanity does not know yet.
- **APSP-Conjecture:** There is no $O(V^{2.99999})$ time algorithm for APSP.

Weights	Time
none	$O(V^3)$
non-negative	$O(V^3 \log V)$
no negative cycles	$O(V^4)$
no negative cycles	$O(V^4)$
no negative cycles	$O(V^3 \log V)$
no negative cycles	$O(V^3)$

1951-1962. Ity does not know yet. $V^{2.99999}$) time algorithm for APSP.

- Recap: Algorithms for Single-Source Shortest Path
- All-Pairs Shortest Paths
 - Algorithm 1: Lots of Single Sources
 - Algorithm 2: Basic Dynamic Programming
 - Algorithm 3: Divide & Conquer Dynamic Programming
 - Algorithm 4: Floyd-Warshall's Algorithm

