All-Pairs Shortest Paths

[Erickson, chapter 9]

- Recap: Algorithms for Single-Source Shortest Path
- All-Pairs Shortest Paths
- Algorithm 1: Lots of Single Sources
- Algorithm 2: Basic Dynamic Programming
- Algorithm 3: Divide \& Conquer Dynamic Programming
- Algorithm 4: Floyd-Warshall's Algorithm

All-Pairs Shortest Paths

[Erickson, chapter 9]

- Recap: Algorithms for Single-Source Shortest Path
- All-Pairs Shortest Paths
- Algorithm 1: Lots of Single Sources
- Algorithm 2: Basic Dynamic Programming
- Algorithm 3: Divide \& Conquer Dynamic Programming
- Algorithm 4: Floyd-Warshall's Algorithm

Representation of Directed, Weighted Graphs

Recap

Drawing

	a	b	c	d	e
a	0	-9	0	0	2
b	12	0	0	3	0
c	0	0	0	0	-4
d	0	0	7	0	0
e	0	0	0	20	0

Weighted Adjacency Matrix
a b -9
a e 2
b a 12
b d 3
c e -4
d c 7
e d 20

Edge List

Single-Source Shortest Paths (SSSP)

Goal: Compute the shortest paths from s to all vertices

Path from a to e of length -3

Shortest paths from a: (0, -9, 1, -6, -3)

Shortest paths from a: $\operatorname{dist}(\mathrm{a}, \mathrm{a})=0$
$\operatorname{dist}(\mathrm{a}, \mathrm{b})=-9$
$\operatorname{dist}(\mathrm{a}, \mathrm{c})=1$
$\operatorname{dist}(\mathrm{a}, \mathrm{d})=-6$
$\operatorname{dist}(\mathrm{a}, \mathrm{e})=-3$

The distance dist(\mathbf{s}, v) is the length of a shortest path from s to v.

Single-Source Shortest Paths (SSSP)

Algorithms

Path from a to e of length -3

Shortest paths from a: (0, -9, 1, -6, -3)

- Breadth-first search (BFS):
- only works if all weights are 1!
- Time $O(V+E)$ \square
- Dijkstra's algorithm:
$E=$ number of edges
- works if all weights are ≥ 0.
- Time $O(E \log V)$ slower than BFS!
- Bellman-Ford's algorithm:
- works even if there are negative weights!
- Time $O(E V)$ slower than Dijkstra!

Single-Source Shortest Paths (SSSP)

The Issue of Negative Cycles

- bdcb is a negative cycle!
- The path abdce has weight -3.
- The path abdcbdce has weight -13.
- The path abdcbdcbdce has weight -23.
- There is no shortest path from a to e.

Beware: The concept of "shortest paths" only makes sense if there is no negative cycle!

All-Pairs Shortest Paths

[Erickson, chapter 9]

- Recap: Algorithms for Single-Source Shortest Path
- All-Pairs Shortest Paths
- Algorithm 1: Lots of Single Sources
- Algorithm 2: Basic Dynamic Programming
- Algorithm 3: Divide \& Conquer Dynamic Programming
- Algorithm 4: Floyd-Warshall's Algorithm

All-Pairs Shortest Paths (APSP)

Goal: Compute shortest paths between all vertices

Distances can be arranged in a matrix:

	a	b	c	d	e
a	0	-9	1	-6	-3
b	12	0	10	3	6
c	∞	∞	0	16	-4
d	∞	∞	7	0	3
e	∞	∞	27	20	0

Examples:

- $\operatorname{dist}(\mathrm{e}, \mathrm{c})=27$
- $\operatorname{dist}(\mathbf{c}, \mathrm{b})=\infty$

The goal of APSP is to compute this matrix.

Goal of APSP(V, E, w):

Algorithm 1: Lots of Single Sources

[Erickson, chapter 9.2]

- How would we solve APSP with what we already know?

```
ObviousAPSP(V, E, w):
    for every vertex s:
    dist[s, .] = SSSP(V, E, w, s)
```

- Running Time?

Algorithm	Weights	Time
V times BFS	none	$O(V \cdot E)=O\left(V^{3}\right)$
V times Dijkstra	non-negative	$O(V \cdot(E \log V))=O\left(V^{3} \log V\right)$
V times Bellman-Ford	no negative cycles	$O(V \cdot(E V))=O\left(V^{4}\right)$

Challenge: Can we achieve $O\left(V^{3}\right)$ when the graph has negative weights?

All-Pairs Shortest Paths

[Erickson, chapter 9]

- Recap: Algorithms for Single-Source Shortest Path
- All-Pairs Shortest Paths
- Algorithm 1: Lots of Single Sources
- Algorithm 2: Basic Dynamic Programming
- Algorithm 3: Divide \& Conquer Dynamic Programming
- Algorithm 4: Floyd-Warshall's Algorithm

Dynamic Programming

Recap from [Erickson, chapter 3.4]

Designing algorithms using Dynamic Programming takes two main steps:

1. Solve the problem using a recursive algorithm
(This step requires creativity.)
2. Turn the recursive algorithm into a bottom-up iterative algorithm (This step is quite mechanical and requires little creativity.)

Challenge. How can we formulate APSP recursively?

Recursive Invariant for Distances

[Erickson, chapter 9.5]

$$
\operatorname{dist}(u, v)= \begin{cases}0 & \text { if } u=v \\ \min _{x \rightarrow v}(\operatorname{dist}(u, x)+w(x \rightarrow v)) & \text { otherwise }\end{cases}
$$

Recursive Invariant for Distances

[Erickson, chapter 9.5]

$$
\operatorname{dist}(u, v)= \begin{cases}0 & \text { if } u=v \\ \min _{x \rightarrow v}(\operatorname{dist}(u, x)+w(x \rightarrow v)) & \text { otherwise }\end{cases}
$$

- $\operatorname{dist}(u, v)$ satisfies this recursive invariant
- Issue. If the graph has cycles, the recursion never bottoms out!

Refined Recursive Invariant

[Erickson, chapter 9.5]

$\operatorname{dist}(u, v, l)=$ length of shortest path from u to v with at most l edges.

$$
\operatorname{dist}(u, v, l)= \begin{cases}0 & \text { if } l=0 \text { and } \\
\infty & \text { if } l=0 \text { and } \\
\min \left\{\begin{array}{l}
\operatorname{dist}(u, v, l-1), \\
\min _{x \rightarrow v}(\operatorname{dist}(u, x, l-1)+w(x \rightarrow v))
\end{array}\right\} & \text { otherwise }\end{cases}
$$

- This recursive algorithm terminates!

Algorithm 2: Dynamic Programming

[Erickson, chapter 9.5]

- Dynamic Programming. Instead of recomputing dist (u, v, l) each time recursively, we store it in a table dist $[u, v, l]$:

```
dist[*,*,0] }\longrightarrow\mathrm{ dist[*,*,1] }\longrightarrow\mathrm{ dist[*,*,2]
dist[*,*,l-1]
```

base cases can
be initialized
directly.

Algorithm 2: Dynamic Programming

[Erickson, chapter 9.5]

```
ShimbelAPSP(V, E,w):
    initialize dist[u,u,0] = 0 for all vertices u.
    initialize dist[u,v,0] = \infty for all vertices u and v with u\not=v.
    for l from 1 to V-1:
        for all vertices u:
            for all vertices v with u\not=v:
            set dist[u,v,l] = min{ dist[u,v,l-1],
                        dist[u,x,l-1] + w(x->v) : for all edges }x->v 
```

- Running time: $O\left(V^{4}\right)$
- Space: $O\left(V^{3}\right)$
- We only ever need dist[*, , , l-1] to compute dist[*, *, l], so we can simplify the algorithm and use space $O\left(V^{2}\right)$.

Algorithm 2: Dynamic Programming

[Erickson, chapter 9.5]

```
ShimbelAPSP(V, E, w):
    initialize dist[u,u,0] = 0 for all vertices u.
    initialize dist[u,v,0] = \infty for all vertices u and v with u\not=v.
    for l from 1 to V-1:
        for all vertices u:
            for all vertices v with u\not=v:
                set dist[u,v,l] = min{ dist[u,v,l-1],
                        dist[u,x,l-1] + w(x->v) : for all edges }x->v\mp@code{}
```

- Running time: $O\left(V^{4}\right)$
- Space: $O\left(V^{3}\right)$
- We only ever need dist[*, , , l-1] to compute dist[*, *, l], so we can simplify the algorithm and use space $O\left(V^{2}\right)$.

Algorithm 2: Dynamic Programming

[Erickson, chapter 9.5]

```
AllPairsBellmanFord(V, E, w):
    initialize dist[u,u ] = 0 for all vertices u.
    initialize dist[u,v ] = for all vertices }u\mathrm{ and v with u}u=v
    for l from 1 to v-1:
        for all vertices u:
            for all vertices v with u\not=v:
            set dist[u,v ] = min{ dist[u,v ],
                        dist[u,x ] + w(x->v) : for all edges x->v }
```

- Running time: $O\left(V^{4}\right)$
- Space: $O\left(V^{3}\right)$
- We only ever need dist[*, , , l-1] to compute dist[*, *, l], so we can simplify the algorithm and use space $O\left(V^{2}\right)$.

Algorithm 2: Dynamic Programming

[Erickson, chapter 9.5]

```
AllPairsBellmanFord(V, E, w):
    initialize dist[u,u] = 0 for all vertices u.
    initialize dist[u,v] = \infty for all vertices }u\mathrm{ and v with u#v.
    for l from 1 to V-1:
        for all vertices u:
            for all vertices v with u\not=v:
            set dist[u,v] = min{ dist[u,v],
                        dist[u,x] + w(x->v) : for all edges }x->v 
```

- Running time: $O\left(V^{4}\right)$
- Space: $O\left(V^{2}\right)$

All-Pairs Shortest Paths

[Erickson, chapter 9]

- Recap: Algorithms for Single-Source Shortest Path
- All-Pairs Shortest Paths
- Algorithm 1: Lots of Single Sources
- Algorithm 2: Basic Dynamic Programming
- Algorithm 3: Divide \& Conquer Dynamic Programming
- Algorithm 4: Floyd-Warshall's Algorithm

Divide and Conquer Recursion

[Erickson, chapter 9.6]

$\operatorname{dist}(u, v, l)=$ length of shortest path from u to v with at most l edges.

Divide and Conquer Recursion

[Erickson, chapter 9.6]

$$
\operatorname{dist}(u, v, l)= \begin{cases}w(u \rightarrow v) & \text { if } l=1 \\ \min _{x}(\operatorname{dist}(u, x, l / 2)+\operatorname{dist}(x, v, l / 2)) & \text { otherwise }\end{cases}
$$

Faster Dynamic Programming using Divide and Conquer

[Erickson, chapter 9.6]

$$
\operatorname{dist}(u, v, l)= \begin{cases}w(u \rightarrow v) & \text { if } l=1 \\ \min _{x}(\operatorname{dist}(u, x, l / 2)+\operatorname{dist}(x, v, l / 2)) & \text { otherwise }\end{cases}
$$

- This recursive algorithm can be turned into an iterative program.
- The refined program runs in time $O\left(V^{3} \log V\right)$ and uses space $O\left(V^{2}\right)$.

All-Pairs Shortest Paths

[Erickson, chapter 9]

- Recap: Algorithms for Single-Source Shortest Path
- All-Pairs Shortest Paths
- Algorithm 1: Lots of Single Sources
- Algorithm 2: Basic Dynamic Programming
- Algorithm 3: Divide \& Conquer Dynamic Programming
- Algorithm 4: Floyd-Warshall's Algorithm

Floyd-Warshall's Recursion

[Erickson, chapter 9.8]

- Let us label the vertices with the numbers $1,2,3, \ldots, \mathrm{~V}$.

$$
\pi(u, v, r)=\text { length of shortest path from } u \text { to } v
$$

that may only use intermediate vertices numbered $\leq r$.

- Examples:

invalid path for $\pi(1,3,4)$

Floyd-Warshall's Recursion

[Erickson, chapter 9.8]

- Let us label the vertices with the numbers $1,2,3, \ldots, \mathrm{~V}$.

$$
\begin{aligned}
& \qquad \pi(u, v, r)=\text { length of shortest path from } u \text { to } v \\
& \text { that may only use intermediate vertices numbered } \leq r .
\end{aligned}
$$

- Idea: Shortest valid path for $\pi(u, v, r)$ either goes through r or not.

Floyd-Warshall's Recursion

[Erickson, chapter 9.8]

$$
\operatorname{dist}(u, v, r)= \begin{cases}w(u \rightarrow v) & \text { if } r=0 \\ \min (\operatorname{dist}(u, v, r-1), \operatorname{dist}(u, r, r-1)+\operatorname{dist}(r, v, r-1)) & \text { otherwise }\end{cases}
$$

Algorithm 3: Floyd-Warshall's Algorithm

[Erickson, chapter 9.8]

$$
\operatorname{dist}(u, v, r)= \begin{cases}w(u \rightarrow v) & \text { if } r=0 \\ \min (\operatorname{dist}(u, v, r-1), \operatorname{dist}(u, r, r-1)+\operatorname{dist}(r, v, r-1)) & \text { otherwise }\end{cases}
$$

- Dynamic Progamming. Turn this recursive function into an iterative program.
- The final program runs in time $O\left(V^{3}\right)$.

Overview of APSP Algorithms

Algorithm	Weights	Time
V times BFS	none	$O\left(V^{3}\right)$
V times Dijkstra	non-negative	$O\left(V^{3} \log V\right)$
V times Bellman-Ford	no negative cycles	$O\left(V^{4}\right)$
Basic Dynamic Programming	no negative cycles	$O\left(V^{4}\right)$
Divide and Conquer	no negative cycles	$O\left(V^{3} \log V\right)$
Floyd-Warshall's Algorithm	no negative cycles	$O\left(V^{3}\right)$

- Floyd-Warshall's algorithm is from 1951-1962.
- Is there a faster algorithm? Humanity does not know yet.
- APSP-Conjecture: There is no $O\left(V^{2.99999}\right)$ time algorithm for APSP.

All-Pairs Shortest Paths

[Erickson, chapter 9]

- Recap: Algorithms for Single-Source Shortest Path
- All-Pairs Shortest Paths
- Algorithm 1: Lots of Single Sources
- Algorithm 2: Basic Dynamic Programming
- Algorithm 3: Divide \& Conquer Dynamic Programming
- Algorithm 4: Floyd-Warshall's Algorithm

