
All-Pairs Shortest Paths
[Erickson, chapter 9]

Holger Dell

• Recap: Algorithms for Single-Source Shortest Path

• All-Pairs Shortest Paths

• Algorithm 1: Lots of Single Sources

• Algorithm 2: Basic Dynamic Programming

• Algorithm 3: Divide & Conquer Dynamic Programming

• Algorithm 4: Floyd-Warshall's Algorithm



All-Pairs Shortest Paths
[Erickson, chapter 9]

• Recap: Algorithms for Single-Source Shortest Path

• All-Pairs Shortest Paths

• Algorithm 1: Lots of Single Sources

• Algorithm 2: Basic Dynamic Programming

• Algorithm 3: Divide & Conquer Dynamic Programming

• Algorithm 4: Floyd-Warshall's Algorithm

2



Representation of Directed, Weighted Graphs
Recap

a b -9 
a e 2 
b a 12 
b d 3 
c e -4 
d c 7 
e d 20

3

a b c d e

a 0 -9 0 0 2

b 12 0 0 3 0

c 0 0 0 0 -4

d 0 0 7 0 0

e 0 0 0 20 0

a b

e

dc

12

-9 3

20

2
7

-4

Weighted Adjacency Matrix Edge ListDrawing



Goal of SSSP(V, E, w, s): 

Compute the vector (dist(s,v) : for all v)

Single-Source Shortest Paths (SSSP)

4

a b

e

dc

12

-9 3

20

2
7

-4

Path from a to e 
of length -3

Shortest paths from a: 
dist(a, a) = 0

dist(a, b) = -9

dist(a, c) = 1

dist(a, d) = -6

dist(a, e) = -3

vertices
edges

weights

source

Goal: Compute the shortest paths from s to all vertices

The distance dist(s, v) is the length 
of a shortest path from s to v.

Shortest paths from a: 
(0, -9, 1, -6, -3)



Single-Source Shortest Paths (SSSP)
Algorithms

5

a b

e

dc

12

-9 3

20

2
7

-4

Path from a to e 
of length -3

• Breadth-first search (BFS): 
• only works if all weights are 1! 

• Time  

• Dijkstra's algorithm: 
• works if all weights are ≥0.

• Time    slower than BFS! 

• Bellman-Ford's algorithm: 
• works even if there are negative weights! 

• Time    slower than Dijkstra!

O(V + E)

O(E log V)

O(EV)
Shortest paths from a: 

(0, -9, 1, -6, -3)

Here we write: 
V = number of vertices 
E = number of edges



Single-Source Shortest Paths (SSSP)
The Issue of Negative Cycles

6

• bdcb is a negative cycle!

• The path abdce has weight -3.

• The path abdcbdce has weight -13.

• The path abdcbdcbdce has weight -23.

• ...

• There is no shortest path from a to e.

a b

e

dc

12

-9

3

20

2

7

-4

-20

Beware: The concept of "shortest paths" 
only makes sense if there is no negative cycle!



All-Pairs Shortest Paths
[Erickson, chapter 9]

• Recap: Algorithms for Single-Source Shortest Path

• All-Pairs Shortest Paths

• Algorithm 1: Lots of Single Sources

• Algorithm 2: Basic Dynamic Programming

• Algorithm 3: Divide & Conquer Dynamic Programming

• Algorithm 4: Floyd-Warshall's Algorithm

7



All-Pairs Shortest Paths (APSP)
Goal: Compute shortest paths between all vertices

8

a b

e

dc

12

-9 3

20

2
7

-4

Distances can be arranged in a matrix:
a b c d e

a 0 -9 1 -6 -3

b 12 0 10 3 6

c ∞ ∞ 0 16 -4

d ∞ ∞ 7 0 3

e ∞ ∞ 27 20 0

Examples: 
• dist(e,c)=27 
• dist(c,b)=∞

The goal of APSP is to compute this matrix.

Goal of APSP(V, E, w): 

Compute the matrix (dist(u,v) : for all vertices u and v)



Algorithm 1: Lots of Single Sources
[Erickson, chapter 9.2]

• How would we solve APSP with what we already know? 
 

• Running Time?

9

ObviousAPSP(V, E, w): 
for every vertex s: 
dist[s, .] = SSSP(V, E, w, s)

Challenge: Can we achieve  when the graph has negative weights?O(V3)

Algorithm Weights Time

V times BFS none

V times Dijkstra non-negative

V times Bellman-Ford no negative cycles

O(V ⋅ E) = O(V3)
O(V ⋅ (E log V)) = O(V3 log V)

O(V ⋅ (EV)) = O(V4)



All-Pairs Shortest Paths
[Erickson, chapter 9]

• Recap: Algorithms for Single-Source Shortest Path

• All-Pairs Shortest Paths

• Algorithm 1: Lots of Single Sources

• Algorithm 2: Basic Dynamic Programming

• Algorithm 3: Divide & Conquer Dynamic Programming

• Algorithm 4: Floyd-Warshall's Algorithm

10



Dynamic Programming
Recap from [Erickson, chapter 3.4]

Designing algorithms using Dynamic Programming takes two main steps:


1. Solve the problem using a recursive algorithm 
(This step requires creativity.)


2. Turn the recursive algorithm into a bottom-up iterative algorithm 
(This step is quite mechanical and requires little creativity.)

11

Challenge. How can we formulate APSP recursively?



Recursive Invariant for Distances
[Erickson, chapter 9.5]

12

dist(u, v) =
0 if u = v

minx→v (dist(u, x) + w(x → v)) otherwise

u

x''

vx'

x
w(x → v)

w(x′ ′ → v)

w(x′ → v)

dist(u, x)

dist(u, x′ ′ )

dist(u, x′ )



Recursive Invariant for Distances
[Erickson, chapter 9.5]

13

•  satisfies this recursive invariant


• Issue. If the graph has cycles, the recursion never bottoms out!

dist(u, v)

dist(u, v) =
0 if u = v

minx→v (dist(u, x) + w(x → v)) otherwise



Refined Recursive Invariant
[Erickson, chapter 9.5]

14

dist(u, v, l) =

0 if l = 0 and u = v
∞ if l = 0 and u ≠ v

min {
dist(u, v, l − 1),
minx→v (dist(u, x, l − 1) + w(x → v))} otherwise

 = length of shortest path from  to  with at most  edges.dist(u, v, l) u v l

• This recursive algorithm terminates!



Algorithm 2: Dynamic Programming
[Erickson, chapter 9.5]

• Dynamic Programming. 
Instead of recomputing  each time recursively, 
we store it in a table dist[u,v,l]:

dist(u, v, l)

15

base cases can 
be initialized 
directly.

dist[*,*,0] dist[*,*,1] dist[*,*,2] dist[*,*,l-1]



Algorithm 2: Dynamic Programming
[Erickson, chapter 9.5]

16

ShimbelAPSP(V, E, w): 
initialize dist[u,u,0] = 0 for all vertices u. 
initialize dist[u,v,0] = ∞ for all vertices u and v with u≠v. 

for l from 1 to V-1: 
for all vertices u: 
for all vertices v with u≠v: 
set dist[u,v,l] = min{ dist[u,v,l-1], 

                         dist[u,x,l-1] + w(x→v) : for all edges x→v }

• Running time: 


• Space: 


• We only ever need dist[*,*,l-1] to compute dist[*,*,l], 
so we can simplify the algorithm and use space .

O(V4)
O(V3)

O(V2)



Algorithm 2: Dynamic Programming
[Erickson, chapter 9.5]

17

ShimbelAPSP(V, E, w): 
initialize dist[u,u,0] = 0 for all vertices u. 
initialize dist[u,v,0] = ∞ for all vertices u and v with u≠v. 

for l from 1 to V-1: 
for all vertices u: 
for all vertices v with u≠v: 
set dist[u,v,l] = min{ dist[u,v,l-1], 

                         dist[u,x,l-1] + w(x→v) : for all edges x→v }

• Running time: 


• Space: 


• We only ever need dist[*,*,l-1] to compute dist[*,*,l], 
so we can simplify the algorithm and use space .

O(V4)
O(V3)

O(V2)



Algorithm 2: Dynamic Programming
[Erickson, chapter 9.5]

18

AllPairsBellmanFord(V, E, w): 
initialize dist[u,u  ] = 0 for all vertices u. 
initialize dist[u,v  ] = ∞ for all vertices u and v with u≠v. 

for l from 1 to V-1: 
for all vertices u: 
for all vertices v with u≠v: 
set dist[u,v  ] = min{ dist[u,v    ], 

                         dist[u,x    ] + w(x→v) : for all edges x→v }

• Running time: 


• Space: 


• We only ever need dist[*,*,l-1] to compute dist[*,*,l], 
so we can simplify the algorithm and use space .

O(V4)
O(V3)

O(V2)



Algorithm 2: Dynamic Programming
[Erickson, chapter 9.5]

19

AllPairsBellmanFord(V, E, w): 
initialize dist[u,u] = 0 for all vertices u. 
initialize dist[u,v] = ∞ for all vertices u and v with u≠v. 

for l from 1 to V-1: 
for all vertices u: 
for all vertices v with u≠v: 
set dist[u,v] = min{ dist[u,v], 

                       dist[u,x] + w(x→v) : for all edges x→v }

• Running time: 


• Space: 

O(V4)
O(V2)



All-Pairs Shortest Paths
[Erickson, chapter 9]

• Recap: Algorithms for Single-Source Shortest Path

• All-Pairs Shortest Paths

• Algorithm 1: Lots of Single Sources

• Algorithm 2: Basic Dynamic Programming

• Algorithm 3: Divide & Conquer Dynamic Programming

• Algorithm 4: Floyd-Warshall's Algorithm

20



Divide and Conquer Recursion
[Erickson, chapter 9.6]

21

 = length of shortest path from  to  with at most  edges.dist(u, v, l) u v l

u

x''

v
x'

x
dist(u, x, l/2)

dist(u, x′ ′ , l/2)

dist(u, x′ , l/2)

dist(x, v, l/2)

dist(x′ , v, l/2)

dist(x′ ′ , v, l/2)



Divide and Conquer Recursion
[Erickson, chapter 9.6]

dist(u, v, l) = {
w(u → v) if l = 1
minx (dist(u, x, l/2) + dist(x, v, l/2)) otherwise

u

x''

v
x'

x
dist(u, x, l/2)

dist(u, x′ ′ , l/2)

dist(u, x′ , l/2)

dist(x, v, l/2)

dist(x′ , v, l/2)

dist(x′ ′ , v, l/2)



Faster Dynamic Programming using Divide and Conquer
[Erickson, chapter 9.6]

23

• This recursive algorithm can be turned into an iterative program.

• The refined program runs in time  and uses space .O(V3 log V) O(V2)

dist(u, v, l) = {
w(u → v) if l = 1
minx (dist(u, x, l/2) + dist(x, v, l/2)) otherwise



All-Pairs Shortest Paths
[Erickson, chapter 9]

• Recap: Algorithms for Single-Source Shortest Path

• All-Pairs Shortest Paths

• Algorithm 1: Lots of Single Sources

• Algorithm 2: Basic Dynamic Programming

• Algorithm 3: Divide & Conquer Dynamic Programming

• Algorithm 4: Floyd-Warshall's Algorithm

24



Floyd-Warshall's Recursion
[Erickson, chapter 9.8]

25

 = length of shortest path from  to  
that may only use intermediate vertices numbered .

π(u, v, r) u v
≤ r

• Let us label the vertices with the numbers 1, 2, 3, ..., V.

• Examples:

1 2

4

53

valid path for π(5,4,4)

1 2

4

53

invalid path for π(1,3,4)

1 2

4

53

valid path for π(1,2,4)



Floyd-Warshall's Recursion
[Erickson, chapter 9.8]

26

 = length of shortest path from  to  
that may only use intermediate vertices numbered .

π(u, v, r) u v
≤ r

• Let us label the vertices with the numbers 1, 2, 3, ..., V.

• Idea: Shortest valid path for  either goes through r or not.π(u, v, r)

u v

intermediate nodes ≤ r

u v

r

intermediate nodes ≤ r − 1

intermediate nodes ≤ r − 1intermediate nodes ≤ r − 1

either / or



Floyd-Warshall's Recursion
[Erickson, chapter 9.8]

27

u v

r

intermediate nodes ≤ r − 1

intermediate nodes ≤ r − 1intermediate nodes ≤ r − 1

u v

intermediate nodes ≤ r either / or

dist(u, v, r) = {
w(u → v) if r = 0
min (dist(u, v, r − 1), dist(u, r, r − 1) + dist(r, v, r − 1)) otherwise



Algorithm 3: Floyd-Warshall's Algorithm
[Erickson, chapter 9.8]

28

dist(u, v, r) = {
w(u → v) if r = 0
min (dist(u, v, r − 1), dist(u, r, r − 1) + dist(r, v, r − 1)) otherwise

• Dynamic Progamming. Turn this recursive function into an iterative program.

• The final program runs in time .O(V3)



Overview of APSP Algorithms

29

• Floyd-Warshall's algorithm is from 1951-1962.

• Is there a faster algorithm? Humanity does not know yet.

• APSP-Conjecture: There is no  time algorithm for APSP.O(V2.99999)

Algorithm Weights Time

V times BFS none

V times Dijkstra non-negative

V times Bellman-Ford no negative cycles

Basic Dynamic Programming no negative cycles

Divide and Conquer no negative cycles

Floyd-Warshall's Algorithm no negative cycles

O(V3)
O(V3 log V)

O(V4)

O(V4)
O(V3 log V)

O(V3)



All-Pairs Shortest Paths
[Erickson, chapter 9]

• Recap: Algorithms for Single-Source Shortest Path

• All-Pairs Shortest Paths

• Algorithm 1: Lots of Single Sources

• Algorithm 2: Basic Dynamic Programming

• Algorithm 3: Divide & Conquer Dynamic Programming

• Algorithm 4: Floyd-Warshall's Algorithm

30


