All-Pairs Shortest Paths

[Erickson, chapter 9]

* Recap: Algorithms for Single-Source Shortest Path
* All-Pairs Shortest Paths
* Algorithm 1: Lots of Single Sources
» Algorithm 2: Basic Dynamic Programming
* Algorithm 3: Divide & Conguer Dynamic Programming
* Algorithm 4: Floyd-Warshall's Algorithm

Holger Dell

All-Pairs Shortest Paths

[Erickson, chapter 9]

* Recap: Algorithms for Single-Source Shortest Path
* All-Pairs Shortest Paths
* Algorithm 1: Lots of Single Sources
* Algorithm 2: Basic Dynamic Programming
* Algorithm 3: Divide & Conquer Dynamic Programming
* Algorithm 4: Floyd-Warshall's Algorithm

Representation of Directed, Weighted Graphs

Recap
a b ¢ d e a b -9
a 0 9 0 0 2 a e 2
b 12 0 | 0 3 |0 :33;2
c 0 0| 0 0 -4 c e -4
d 0 0|7 0 O d c 7
e | 0 0| 0 20 O e d 20

Drawing Weighted Adjacency Matrix Edge List

Single-Source Shortest Paths (SSSP)

Goal: Compute the shortest paths from s to all vertices

Path from ato e
of length -3

Shortest paths from a:

0, -9, 1, -6, -3)

Shortest paths from a:

The distance dist(s, v) is the length
dist(a, b) = - of a shortest path from s to v.

Goal of SSSP(V, E, w, s):

Compute the vector (dist(s,v) : for all v)

Single-Source Shortest Paths (SSSP)

Algorithms

Path from ato e
of length -3

Shortest paths from a:

0, -9, 1, -6, -3)

 Breadth-first search (BFS):
e only works Iif all weights are 1!
» Time O(V T E) Here we write:

V = number of vertices

. - E = number of edges
* Dijkstra's algorithm: HTRE TR

e works If all weights are >0.
» Time O(E'log V) slower than BFS!

 Bellman-Ford's algorithm:
* works even if there are negative weights!

« Time O(EV) slower than Dijkstra!

Single-Source Shortest Paths (SSSP)

The Issue of Negative Cycles

ne pat
The pat
The pat

* bdcb is a negative cycle!

n abdce has weight -3.
n abdcbdce has weight -13.

n abdcbdcbdce has weight -23.

 There is no shortest path from a to e.

Beware: The concept of "shortest paths”
only makes sense if there is no negative cycle!

All-Pairs Shortest Paths

[Erickson, chapter 9]

* Recap: Algorithms for Single-Source Shortest Path
* All-Pairs Shortest Paths
* Algorithm 1: Lots of Single Sources
* Algorithm 2: Basic Dynamic Programming
* Algorithm 3: Divide & Conquer Dynamic Programming
* Algorithm 4: Floyd-Warshall's Algorithm

All-Pairs Shortest Paths (APSP)

Goal: Compute shortest paths between all vertices

Distances can be arranged in a matrix:

@ o Q

O

a b C d e
0 -9 | 1 -6 | -3
12| 0 10 | 3 6
© | 0o | 0O | 16 | -4
© | oo | 7 0 3
o | 0o | 27 1 20| O

Examples:
o dist(e,c)=27
* dist(c,b)=c0

The goal of APSP is to compute this matrix.

Goal of APSP(V, E, w):

Compute the matrix (dist(u,v) : for all vertices u and v)

Algorithm 1: Lots of Single Sources
[Erickson, chapter 9.2]

 How would we solve APSP with what we already know?

ObviousAPSP(V, E, w):
for every vertex s:
dist[s, .] = SSSP(V, E, w, s)

Algorithm Weights Time
* Running Time? V times BFS none OV - E) = O(V?)
V times Dijkstra non-negative OV (ElogV)) = oV’ log V)
V times Bellman-Ford no negative cycles OV - (EV)) = O(VY

Challenge: Can we achieve O(VB) when the graph has negative weights?

All-Pairs Shortest Paths

[Erickson, chapter 9]

* Recap: Algorithms for Single-Source Shortest Path
* All-Pairs Shortest Paths
* Algorithm 1: Lots of Single Sources
» Algorithm 2: Basic Dynamic Programming
* Algorithm 3: Divide & Conquer Dynamic Programming
* Algorithm 4: Floyd-Warshall's Algorithm

10

Dynamic Programming

Recap from [Erickson, chapter 3.4]

Designing algorithms using Dynamic Programming takes two main steps:

1. Solve the problem using a recursive algorithm

(This step requires creativity.)

2. Turn the recursive algorithm into a bottom-up iterative algorithm
(This step is quite mechanical and requires little creativity.)

Challenge. How can we formulate APSP recursively?

11

Recursive Invariant for Distances
[Erickson, chapter 9.5]

0 ifu=v
dist(u, v) =

min, _, (dist(u,x) + w(x — v)) otherwise

dist(u, x)

wx — v)

dist(u, x")

—~——— —_— \ Ist(u, x”)

Recursive Invariant for Distances
[Erickson, chapter 9.5]

0 ifu=v
dist(u,v) =

min, _, (dist(u,x) + w(x — v)) otherwise

e dist(u, v) satisfies this recursive invariant

* Issue. If the graph has cycles, the recursion never bottoms out!

13

Refined Recursive Invariant
[Erickson, chapter 9.5]

dist(u, v, [) = length of shortest path from u to v with at most [edges.

0 fl=0and u =v
- fl=0and u # v
dist(u, v,) = dist(u, v, — 1), .
Hin | | otherwise
min,_, (dlst(u,x, [—1)+wkx — V))

* This recursive algorithm terminates!

14

Algorithm 2: Dynamic Programming
[Erickson, chapter 9.5]

 Dynamic Programming.
Instead of recomputing dist(u, v, [) each time recursively,
we store it in a table dist|u,v, L]:

dist[*,*x,0] —— dist[*x,*,1] —— dist[*,*%,2] e

base cases can
be initialized
directly.

dist[*,*x,1-1]

15

Algorithm 2: Dynamic Programming
[Erickson, chapter 9.5]

ShimbelAPSP(V, E, w):
initialize dist[u,u,0] = 0 for all vertices u.
L1ze dist[u,v,0] = « for all vertices u and v with uzv.

initia

for 1L from 1 to V-1:
for all vertices u:
for all vertices v with u#v:

set dist[u,v,l] = min{ dist[u,v,l-1],
dist[u,x,l-1] + w(x>v) : for all edges x-»v }

» Running time: O(V*)

. Space: O(V?)
e Weonly ever need dist[*x,*,1l-1] tocomputedist[*x,x, 1],
so we can simplify the algorithm and use space O(V?).

16

Algorithm 2: Dynamic Programming
[Erickson, chapter 9.5]

ShimbelAPSP(V, E, w):
initialize dist[u,uy,®0] = 0 for all vertices u.
initialize dist[u,v,0] = « for all vertices u and v with uzv.

for 1L from 1 to V-1:
for all vertices u:
for all vertices v with u#v:
set dist[u,v,l] = min{ dist[u,v,l-1],
dist[u,x,1-1] + w(x>v) : for all edges x»v }

» Running time: O(V*)

. Space: O(V?)
e Weonly ever need dist[*x,*,1l-1] tocomputedist[*x,x, 1],
so we can simplify the algorithm and use space O(V?).

17

Algorithm 2: Dynamic Programming
[Erickson, chapter 9.5]

w) :
® for all vertices u.
o for all vertices u and v with uzv.

AllPairsBellmanFord(V, E,
initialize dist[u,u |
initialize dist[u,v]

for 1L from 1 to V-1:
for all vertices u:
for all vertices v with u#v:

set dist[u,v | = min{ dist[u,vV 1,
dist[u,x] + w(x»>v) : for all edges x»>v }

» Running time: O(V*)

. Space: O(V?)
e Weonly ever need dist[*x,*,1l-1] tocomputedist[*x,x, 1],
so we can simplify the algorithm and use space O(V?).

18

Algorithm 2: Dynamic Programming
[Erickson, chapter 9.5]

AllPairsBellmanFord(V, E, w):
initialize dist[u,u] = 0 for all vertices u.
initialize dist[u,v] = «© for all vertices u and v with uzv.

for 1L from 1 to V-1:
for all vertices u:
for all vertices v with u#v:
set dist[u,v] = min{ dist[u,v],
dist[u,x] + w(x>v) : for all edges x»>v }

» Running time: O(V*)
. Space: O(V?)

19

All-Pairs Shortest Paths

[Erickson, chapter 9]

* Recap: Algorithms for Single-Source Shortest Path
* All-Pairs Shortest Paths
* Algorithm 1: Lots of Single Sources
* Algorithm 2: Basic Dynamic Programming
* Algorithm 3: Divide & Conguer Dynamic Programming
* Algorithm 4: Floyd-Warshall's Algorithm

20

Divide and Conquer Recursion
[Erickson, chapter 9.6]

dist(u, v, [) = length of shortest path from u to v with at most / edges.

dist(u, x, 1/2) o

dist(u, x".1/2)

21

Divide and Conquer Recursion
[Erickson, chapter 9.6]

| w(u = v) if [=1
dist(u, v,) =

min, (dist(u, x, [/2) + dist(x,v,1/2)) otherwise

diSt(u, X, 1/2)

dist(u, x",1/ 2

Faster Dynamic Programming using Divide and Conquer
[Erickson, chapter 9.6]

| w(u — v) ifl=1
dist(u, v,) =

min, (dist(u, x, [/2) + dist(x,v,1/2)) otherwise

* This recursive algorithm can be turned into an iterative program.
. The refined program runs in time O(V> log V) and uses space O(V?).

23

All-Pairs Shortest Paths

[Erickson, chapter 9]

* Recap: Algorithms for Single-Source Shortest Path
* All-Pairs Shortest Paths
* Algorithm 1: Lots of Single Sources
* Algorithm 2: Basic Dynamic Programming
* Algorithm 3: Divide & Conquer Dynamic Programming
* Algorithm 4: Floyd-Warshall's Algorithm

24

Floyd-Warshall's Recursion
[Erickson, chapter 9.8]

e |Let us label the vertices with the numbers 1, 2, 3, ..., V.

n(u, v, r) = length of shortest path from u to v
that may only use intermediate vertices numbered < 7.

 Examples:

valid path for 7(1,2,4) invalid path for (1,3,4) valid path for 7(5,4,4)

25

Floyd-Warshall's Recursion
[Erickson, chapter 9.8]

e |Let us label the vertices with the numbers 1, 2, 3, ..., V.

n(u, v, r) = length of shortest path from u to v
that may only use intermediate vertices numbered < 7.

» |dea: Shortest valid path for #(u, v, r) either goes through r or not.

intermediate nodes < r — 1

S o - e

intermediate nodes < r

,/
Y
ZF
/f‘//
&
e pad
- . ,,,
— g 7
- "
&>
A
J&‘
R

intermediate nodes < 7 — 1 N R

nodes < r —1

26

Floyd-Warshall's Recursion
[Erickson, chapter 9.8]

min (dist(u, v,r— 1), dist(u,r,r— 1)+ dist(r, v, r — 1)) otherwise

_ W(I/t —> V) |f = O
dist(u,v,r) = {

Algorithm 3: Floyd-Warshall's Algorithm

[Erickson, chapter 9.8]

_ W(I/t —> V) |f = O
dist(u,v,r) = {

min (dist(u, v,r— 1), dist(u,r,r— 1)+ dist(r, v, r — 1)) otherwise

 Dynamic Progamming. Turn this recursive function into an iterative program.
» The final program runs in time O(V>).

28

Overview of APSP Algorithms

Algorithm Weights
V times BFS none
V times Dijkstra non-negative
V times Bellman-Ford no negative cycles
Basic Dynamic Programming no negative cycles
Divide and Conquer no negative cycles
Floyd-Warshall's Algorithm no negative cycles

* Floyd-Warshall's algorithm is from 1951-1962.

Time
O(V?)
O(V°log V)
O(V*
O(V*
O(V’1log V)
O(V?)

* |s there a faster algorithm? Humanity does not know yet.

. APSP-Conjecture: There is no O(V?7777?) time algorithm for APSP

29

All-Pairs Shortest Paths

[Erickson, chapter 9]

* Recap: Algorithms for Single-Source Shortest Path
* All-Pairs Shortest Paths
* Algorithm 1: Lots of Single Sources
» Algorithm 2: Basic Dynamic Programming
* Algorithm 3: Divide & Conguer Dynamic Programming
e Algorithm 4: Floyd-Warshall's Algorithm

30

