A 7. NETWORK FLow |

B » max-flow and min-cut problems
» Ford—Fulkerson algorithm
» max-flow min-cut theorem
g » capacity-scaling algorithm
\C\ Alfontm Ue [» shortest augmenting paths
A . |

“\ JON KLEINBERG - EVA TARDOS

\‘.

Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Last updated on 01.11.21 19:51

http://www.cs.princeton.edu/~wayne/kleinberg-tardos
http://www.cs.princeton.edu/~wayne

7. NETWORK FLow |

» max-flow and min-cut problems

\\ /~\|g i Design
r\ JON KLEINBERG - EVA TARDOS

SECTION 7.1

Flow network

A flow network is a tuple G=(V, E, s, 1, ¢).
* Digraph (V, E) with source sV and sink rE V.
* Capacity c(e) =0 for each e € E. \
assume all nodes are reachable from s
Intuition. Material flowing through a transportation network;
material originates at source and is sent to sink.

capacity

Minimum-cut problem

Def. An st-cut (cut) is a partition (A, B) of the nodes with s€ A and r € B.

Def. Its capacity is the sum of the capacities of the edges from A to B.

cap(A, B) = Z c(e)

capacity=10+5+15=

Minimum-cut problem

Def. An st-cut (cut) is a partition (A, B) of the nodes with s€ A and r € B.

Def. Its capacity is the sum of the capacities of the edges from A to B.

cap(A, B) = Z c(e)

\ don’t include edges

from B to A

capacity=10+8+l6=

Minimum-cut problem

Def. An st-cut (cut) is a partition (A, B) of the nodes with s€ A and r € B.

Def. Its capacity is the sum of the capacities of the edges from A to B.

cap(A, B) = Z c(e)

e out of A

Min-cut problem. Find a cut of minimum capacity.

capacity=lO+8+lO= 6 -

Network flow: quiz 1

Which is the capacity of the given st-cut?

A.
B.
C.
D.

11 20+25-8—11-9-6)

34 (8+11+9+6)
45 (20 + 25)

79 20+25+8+11+9+6)

o =

capacity

@

10

25

Maximum-flow problem

Def. An st-flow (flow) fis a function that satisfies:

* Foreache€EE: 0 < fle) < cle) [capacity]
» ForeachveVv—{s,t}: Y, flee = > f(e) [flow conservation]
e in to v e out of v
flow capacity
inflowatv = 5+5+0 =10
\5/9 outflowatv = 10+0 =10
Q $ o/15 %
\Q\\ //5 //0

/ 0/15 \Q\\Q

10/16

Maximum-flow problem

Def. An st-f
* For eac

* For eac

e in to v

ow (flow) fis a function that satisfies:
heEE: 0 < fle) < cle) [capacity]
hvEV-—{s,1}: > fle) =

> fle) [flow conservation]

e out of v

Def. The value of a flow f is: wal(f) =) fle) = Y f(e)

5/9

O 5.

/

/\Q\ 5
o—: - 5/8

value = 5+ 10+ 10

& N

10/16

e out of s e in to s

Maximum-flow problem

Def. An st-flow (flow) fis a function that satisfies:
* Foreache€EE: 0 < fle) < cle) [capacity]
» ForeachveVv—{s,t}: Y, flee = > f(e) [flow conservation]

e in to v e out of v

Def. The value of a flow f is: wal(f) =) fle) = Y f(e)

e out of s e in to s

Max-flow problem. Find a flow of maximum value.

8/9
Q 2 $
\ e -
/ /

/\Q\ })
6—5/5—) 8/8 10/10 @
75 , N
/f /6 \Q

~
value = 10+5+ 13 = \

13/16

10

7. NETWORK FLow |

» Ford—Fulkerson algorithm

\\ /~\|g i Design
r\ JON KLEINBERG - EVA TARDOS

SECTION 7.1

Toward a max-flow algorithm

Greedy algorithm.
* Start with f(e) =0 for each edge e € E.

flow capacity
flow network G and flow f \ /
O 0/4 O
O 0
Q\\ 0/2 g 0/6

@ 0/10 Q 0/9 Q

0/10

value of flow

/
@ 0

12

Toward a max-flow algorithm

Greedy algorithm.

* Find an s~ path P where each edge has f(e) < c(e).

flow network G and flow f
0/6 0/

K 0/4
Q/ 0
Q\\ 0/2 o /,

@/0“0 O 0/9\0—0“0»@ :

13

Toward a max-flow algorithm

Greedy algorithm.

* Augment flow along path P.

flow network G and flow f

o/10- ()

8
%/10_)@ 0O +8=8

14

Toward a max-flow algorithm

Greedy algorithm.

« Repeat until you get stuck.

flow network G and flow f

0/10 Q_

o
o

& 0/6 -
-8 / ‘0

2 10

15

Toward a max-flow algorithm

Greedy algorithm.

« Repeat until you get stuck.

flow network G and flow f

@

0/4

N\

10/ 10 @ 10 +6=16

16

Toward a max-flow algorithm

Greedy algorithm.
* Start with f(e) =0 for each edge e € E.

* Find an s~ path P where each edge has f(e) < c(e).
* Augment flow along path P.

« Repeat until you get stuck.

ending flow value = 16

flow network G and flow f

OO

2/2 s . 6/6 6

@ 6/10 Q 8/9 Q 10/10

17

Toward a max-flow algorithm

Greedy algorithm.
* Start with f(e) =0 for each edge e € E.

* Find an s~ path P where each edge has f(e) < c(e).
* Augment flow along path P.

« Repeat until you get stuck.

but max-flow value = 19

flow network G and flow f

e

0/2 2 6/6 9

@ 9/10 Q 9/9 Q 10/10

18

Why the greedy algorithm fails

Q. Why does the greedy algorithm fail?
A. Once greedy algorithm increases flow on an edge, it never decreases it.

Ex. Consider flow network G.
* The unique max flow f*has f*(v,w) =0.
* Greedy algorithm could choose s—v—w—t as first path.

flow network G

Bottom line. Need some mechanism to “undo” a bad decision.

19

Residual network

Original edge. e=(u,v) € E. original flow network G

* Flow f(e). @ 5 1)@

* Capacity c(e). / \

flow capacity

Reverse edge. ereverse = (v, y).
« “Undo” flow sent.

residual network Gs residual

Residual capacity. 4 capacity

u 11
ci(e) = c(e) — fle) foralleeE. Q\)

ci(e™™°) = f(e) for all e e E.

AN
A

reverse edge

edges with positive
residual capacity

Residual network. Gf= (V, Ef’ s, 1, cf)_ / where flow on a reverse edge

negates flow on

* Ef = {e :f(e) < cle)} U {ereverse :f(e) > 0}/ corresponding forward edge
- Key property: f'is a flow in G,iff f+f"is a flow in G.

20

Augmenting path

Def. An augmenting path is a simple s~ path in the residual network G;.

Def. The bottleneck capacity of an augmenting path P is the minimum
residual capacity of any edge in P.

Key property. Letf be a flow and let P be an augmenting path in G,.
Then, after calling f' < AUGMENT(/, ¢, P), the resulting 7’ is a flow and
val(f") = val(f) + bottleneck(Gy, P).

AUGMENT(/, ¢, P)

0 < bottleneck capacity of augmenting path P.
FOREACH edge e € P :

IF(e€E) f(e) < f(e) + O.

ELSE f(ereverse) «— f(ereverse) — §,

RETURN f.

21

Network flow: quiz 2 g

Which is the augmenting path of highest bottleneck capacity?
A. A-F—-=G—H
B A—-B—-C—=D—H
C. A—-F—-B—-G—H
D

A—-F—-B—-G—=(C—=D—=H

residual capacity

/ 5
@ 9 B 8 C 6 D
source
5 > 8 > 4 5 %) 8 5

5 target 22

Ford-Fulkerson algorithm

Ford-Fulkerson augmenting path algorithm.
* Start with f(e) =0 for each edge e € E.
» Find an s~ path P in the residual network G;.
* Augment flow along path P.
« Repeat until you get stuck.

FORD—-FULKERSON(G)

FOREACHedgee €E E: f(e) < 0.

G < residual network of G with respect to flow f.

WHILE (there exists an s~t path P in Gy)

f <= AUGMENT(f, c, P). \
Update Gv. augmenting path

RETURN f.

23

7. NETWORK FLow |

» max-flow min-cut theorem

\\ /~\|g i Design
r\ JON KLEINBERG - EVA TARDOS

SECTION 7.2

Relationship between flows and cuts

Flow value lemma. Let f be any flow and let (A, B) be any cut. Then,
the value of the flow fequals the net flow across the cut (A, B).

val(f) = Z fle) — Z f(e)

e out of A e in to A

net flow across cut = 5+ 10 + 10 = 25

AN
N

° 5/5 . 5/8 ‘—]0/107t value of flow = 25

Q

\

= \
\Q

® Q/

Relationship between flows and cuts

Flow value lemma. Let f be any flow and let (A, B) be any cut. Then,
the value of the flow fequals the net flow across the cut (A, B).

val(f) = Z fle) — Z f(e)

e out of A e in to A

net flow across cut = 10+ 5 + 10 = 25

5/9
R) S
- _
2 /0
5/5* 5/8 10/10 t) value of flow
Q
N
\
O

10/16

25

26

Relationship between flows and cuts

Flow value lemma. Let f be any flow and let (A, B) be any cut. Then,
the value of the flow fequals the net flow across the cut (A, B).

val(f) = Z fle) — Z f(e)

e out of A e in to A

net flow acrosscut = (10+10 +5+10+0+0-(5+5+0+0) =

_5/9

/ I edges from B to A
0/4

* \T_]O/m-) t) value of flow = 25
3

N
\Q

0/4 o

10/16

Network flow: quiz 3

Which is the net flow across the given cut?
A. 11 20+25-8—-11-9—6)
B. 26 20+22-8-4-4)
C. 42 (20+22)

D. 45 (20 +25)

flow capacity

° 20 / 20 8/8
S 4
1/6 -, 8 /8 =, 4/9

®

4/10

4/8

28

Relationship between flows and cuts

Flow value lemma. Let f be any flow and let (A, B) be any cut. Then,
the value of the flow fequals the net flow across the cut (A, B).

val(f) = Z fle) — Z f(e)

e out of A e in to A
i val(f) =) fle) = > f(e)
e out of s e in to s
by flow conservation, all terms .
except for v=s are 0 _Z (Z f(e) o Z f(6)>
veA e out of v e in to v

d>oofle) = Y fle)

e out of A e in to A

29

Relationship between flows and cuts

Weak duality. Let f be any flow and (A, B) be any cut. Then, val(f) < cap(A, B).

Pf.
val(f) = Z fle) — Z f(e)

e out of A e in to A

/g > f(e

flow value

lemma e out of A

A
(]

o

2

o 10
sJ— 5/5 7/8 9/10 ¢ <5 —
15\

12/16

capacity of cut = 30

IA

value of flow = 27

30

Certificate of optimality

Corollary. Let f be a flow and let (A, B) be any cut.
If val(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.

weak duality

Pf. /

* For any flow f': val(f") < cap(A, B) =val(f).
* Forany cut (A’,B"): cap(A',B’) = val(f) = cap(A,B). =

N\

weak duality

8/9
2 & /
oV] 0 10
N\
/7
s Q
— N N\
/7 e
3 6 \Q\
13/16 >

value of flow = 28

capacity of cut = 28

Max-flow min-cut theorem

Max-flow min-cut theorem. Value of a max flow = capacity of a min cut.

MAXIMAL FLOW THROUGH A NETWORK

L. R. FORD, Jr. axnp D. R. FULKERSON

Introduction. The problem discussed in this paper was formulated by
T. Harris as follows:

“Consider a rail network connecting two cities by way of a number of
intermediate cities, where each link of the network has a number assigned to
it representing its capacity. Assuming a steady state condition, find a maximal
flow from one given city to the other.”

strong duality

?

G. B. Dantzig
D. R. Fulkerson

o &

April 15, 1955

=\

ON THE MAX FLOW MIN CUT THEOREM OF NETWORKS

N

Y

A Note On the Maximum Flow Through a Network’

P. ELIASt, A. FEINSTEIN}, AND C. E. SHANNONS

Summary—This note discusses the problem of maximizing the from one terminal to the other in the original network

rate of flow from one terminal to another, through a network which
consists of a number of branches, each of which has a limited capa-
city. The main result is a theorem: The maximum possible flow from
left to right through a network is equal to the minimum value among
all simple cut-sets. This theorem is applied to solve a more general
problem, in which a number of input nodes and a number of output
nodes are used.

passes through at least one branch in the cut-set. In the
network above, some examples of cut-sets are (d, e, f),
and (b, ¢, ¢, g, h), (d, g, h, ©). By a stmple cut-set we will
mean a cut-set such that if any branch is omitted it is no
longer a cut-set. Thus (d, e, f) and (b, ¢, ¢, g, h) are simple

ot _anto whila fd 4 h 2\ 50 nat Whan a cimanla antd cnt 1o

32

Max-flow min-cut theorem

Max-flow min-cut theorem. Value of a max flow = capacity of a min cut.

Augmenting path theorem. A flow f is a max flow iff no augmenting paths.

Pf. The following three conditions are equivalent for any flow f:
I. There exists a cut (A, B) such that cap(A, B) = val(f).
ii. fis a max flow.

iii. There is no augmenting path with respect to f. < 'fFord-Ffulkerson terminates,

then fis max flow

[=ii]
* This is the weak duality corollary. =

33

Max-flow min-cut theorem

Max-flow min-cut theorem. Value of a max flow = capacity of a min cut.
Augmenting path theorem. A flow f is a max flow iff no augmenting paths.

Pf. The following three conditions are equivalent for any flow f:
I. There exists a cut (A, B) such that cap(A, B) = val(f).

ii. fis a max flow.

iii. There is no augmenting path with respect to /.

[ii = iii] We prove contrapositive: —iii = —ii.
* Suppose that there is an augmenting path with respect to f.
* Can improve flow f by sending flow along this path.
* Thus, f is not a max flow. =

34

Max-flow min-cut theorem

[iii =i]
* Let f be a flow with no augmenting paths.
* Let A=set of nodes reachable from s in residual network G;.
* By definition of A: s € A.

* By definition of flow £ & A. edge e = (v, w) with vE B, w € A

must have f(e) =0
original flow network G

val(f) = Z fle) — Z f(e) A

/ e out of A e in to A B
flow value
lemma — E c(e) — 0 Q @

edgee=(v,w) withvEA, WEB
must have f(e) = c(e)

35

Computing a minimum cut from a maximum flow

Theorem. Given any max flow f, can compute a min cut (4, B) in O(m) time.
Pf. Let A = set of nodes reachable from s in residual network G;. =

N

argument from previous slide implies that
capacity of (A, B) = value of flow f

— T
A i\\ls
AN

] \Q

N Ny

16

7. NETWORK FLow |

» capacity-scaling algorithm

\\ /~\|g i Design
r\ JON KLEINBERG - EVA TARDOS

SECTION 7.3

Analysis of Ford-Fulkerson algorithm (when capacities are integral)

Assumption. Every edge capacity c(e) is an integer between 1 and C.

Integrality invariant. Throughout Ford-Fulkerson, every edge flow f(e)
and residual capacity cq(e) is an integer.
Pf. By induction on the number of augmenting paths. = consider cut A={ s }

(assumes no parallel edges)

v

Theorem. Ford-Fulkerson terminates after at most val(f*) < nC
augmenting paths, where f* is a max flow.
Pf. Each augmentation increases the value of the flow by at least 1. =

Corollary. The running time of Ford-Fulkerson is O(mn C).

Pf. Can use either BFS or DFS to find an augmenting path in O(m) time. =
- f(e) is an integer for every e

Integrality theorem. There exists an integral max flow f*.

Pf. Since Ford-Fulkerson terminates, theorem follows from integrality

invariant (and augmenting path theorem). =

38

Ford-Fulkerson: exponential example

Q. Is generic Ford-Fulkerson algorithm poly-time in input size?
m, n, and log C
A. No. If max capacity is C, then algorithm can take > C iterations.

* sV W—f

¢ (—sy—>p—>t each augmenting path
<«—— sends only 1 unit of flow
¢ (> y—>p—>t (# augmenting paths = 20)

* SSW—Y—>f

* s—V—W—t

* SSW—Y—>f

Network flow: quiz 4

The Ford-Fulkerson algorithm is guaranteed to terminate if the edge
capacities are ...

A. Rational numbers.
B. Real numbers.
C. Both A and B.

D. Neither A nor B.

40

Choosing good augmenting paths

Use care when selecting augmenting paths.
« Some choices lead to exponential algorithms.
« Clever choices lead to polynomial algorithms.

Pathology. When edge capacities can be irrational, no guarantee
that Ford-Fulkerson terminates (or converges to a maximum flow)!

Goal. Choose augmenting paths so that:
« Can find augmenting paths efficiently.
* Few iterations.

41

Choosing good augmenting paths

Choose augmenting paths with:

« Max bottleneck capacity (“fattest”). «<—— how to find?

- Sufficiently large bottleneck capacity. «<—— next

» Fewest edges. «—— ahead

Theoretical Improvements in Algorithmic Efficiency

for Network Flow Problems

JACK EDMONDS

University of Waterloo, Walerloo, Oniario, Canada

AND

RICHARD M. KARP

U niversity of California, Berkeley, California

ABsSTRACT. This paper presents new algorithms for the maximum flow problem, the Hiteheock
transportation problem, and the general minimum-cost flow problem. Upper bounds on the

numbers of steps in these algorithms are derived, and are shown to compare favorably with
upper bounds on the numbers of steps required by earlier algorithms.

Edmonds-Karp 1972 (USA)

Dokl. Akad. Nauk SSSR Soviet Math. Dokl.
Tom 194 (1970), No. 4 Vol. 11 (1970), No.5

A

ALGORITHM FOR SOLUTION OF A PROBLEM OF MAXIMUM FLOW IN A NETWORK WITH

POWER ESTIMATION
UDC 518.5 :
E. A. DINIC

Different variants of the formulation of the problem of maximal stationary flow in a network and
its many applications are given in [1]. There also is given an algorithm solving the problem in the
case where the initial data are integers (or, what is equivalent, commensurable). In the general case
this algorithm requires preliminary rounding off of the initial data, i.e. only an approximate solution
of the problem is possible. In this connection the rapidity of convergence of the algorithm is inverse-

ly proportional to the relative precision.

Dinitz 1970 (Soviet Union)

invented in response to a class
exercises by Adel’son-Vel’skil

42

Capacity-scaling algorithm

Overview. Choosing augmenting paths with “large” bottleneck capacity.
* Maintain scaling parameter A. \though not necessarily largest
* Let G¢(A) be the part of the residual network containing
only those edges with capacity > A.
* Any augmenting path in G.(A) has bottleneck capacity > A.

O o) 25 D o 25
@ | O Q @,
2, Q0 2, Q0

Gr Gr(A), A =100

43

Capacity-scaling algorithm

CAPACITY-SCALING(G)

FOREACHedgee €E E: f(e) < 0.
A < largest powerof 2 < C.

WHILE (A = 1)

G¢(A) <= A-residual network of G with respect to flow f. |
WHILE (there exists an s~f path P in G¢(A))

f <= AUGMENT(f, c, P).

Update Gf(A)- A-scaling phase
A<—A/2.

RETURN f.

44

Capacity-scaling algorithm: proof of correctness

Assumption. All edge capacities are integers between 1 and C.

Invariant. The scaling parameter A is a power of 2.
Pf. Initially a power of 2; each phase divides A by exactly 2. =

Integrality invariant. Throughout the algorithm, every edge flow f(e) and
residual capacity c,(e) is an integer.
Pf. Same as for generic Ford-Fulkerson. =

Theorem. If capacity-scaling algorithm terminates, then fis a max flow.
Pf.

- By integrality invariant, when A=1 = G;(A) =G;.
* Upon termination of A =1 phase, there are no augmenting paths.
* Result follows augmenting path theorem =

45

Capacity-scaling algorithm: analysis of running time

Lemma 1. There are 1+ |log, C| scaling phases.
Pf. Initially C/2 < A < C; A decreases by a factor of 2 in each iteration. =

Lemma 2. Let fbe the flow at the end of a A-scaling phase.
Then, the max-flow value < val(f) + m A.
Pf. Next slide.

Lemma 3. There are <2m augmentations per scaling phase.
Pf or equivalently,

/ at the end

+ Let £ be the flow at the beginning of a A-scaling phase. °'?/scaling phase

* Lemma 2 = max-flow value < val(f) +m 2 A).
* Each augmentation in a A-phase increases val(f) by at least A. =

Theorem. The capacity-scaling algorithm takes O@m? log C) time.
Pf.

* Llemma 1 + Lemma 3 = O(mlog C) augmentations.

* Finding an augmenting path takes O(m) time. =

46

Capacity-scaling algorithm: analysis of running time

Lemma 2. Let fbe the flow at the end of a A-scaling phase.

Then, the max-flow value < val(f) +m A.
Pf.

* We show there exists a cut (A, B) such that cap(A, B) < val(f) + m A.

* Choose A to be the set of nodes reachable from s in Gr(A).
* By definition of A: s € A.

* By definition of flow f: r & A. edge ¢ = (v, w) with v E B, w E A

must have f(e) < A
original flow network

val(f) =) fle) = D fle) A :
/ e out of A e in to A
-
Semma > Y () —A) — 3 A (D
e out of A einto A
> Z cle) — Z A — Z A
e out of A e out of A e in to A ‘ .

> cap(A,B) — mA /

edgee=(v,w)withvEA,WwWERB

must have f(e) > c(e) — A .

7. NETWORK FLow |

» shortest augmenting paths

SECTION 17.2

Shortest augmenting path

Q. How to choose next augmenting path in Ford-Fulkerson?
A. Pick one that uses the fewest edges.

N

can find via BFS

SHORTEST-AUGMENTING-PATH(G)

FOREACHe €EE : f(e) < 0.

Gy < residual network of G with respect to flow f.
WHILE (there exists an s~ path in Gy)

C P < BREADTH—FIRST—SEARCH(Gf)D
f <= AUGMENT(f, c, P).
Update Gy.

RETURN f.

49

Shortest augmenting path: overview of analysis

Lemma 1. The length of a shortest augmenting path never decreases.

N

number of edges

Lemma 2. After at most m shortest-path augmentations, the length of a
shortest augmenting path strictly increases.

Theorem. The shortest-augmenting-path algorithm takes O(m? n) time.
Pf.
* O(m) time to find a shortest augmenting path via BFS.
* There are < m n augmentations.
- at most m augmenting paths of length k «<— Lemma 1 + Lemma 2
- at most n—1 different lengths =

N

augmenting paths are simple paths

50

Augmenting-path algorithms: summary

1955 augmenting path O(mn C)

1972 fattest path m log (mC) O(m? log n log (mC))

1972 capacity scaling m log C O(m? log C) fat paths
1985 improved capacity scaling m log C O(mn log C)

1970 shortest augmenting path mn O(m? n)

1970 level graph mn O(mn?) shortest paths
1983 dynamic trees mn O(mnlogn)

augmenting-path algorithms with m edges, n nodes, and integer capacities between 1 and C

51

Maximum-flow algorithms: theory highlights

1951 simplex O(m n® C) Dantzig
1955 augmenting paths O(mn C) Ford-Fulkerson
1970 shortest augmenting paths O(mn?) Edmonds—Karp, Dinitz
1974 blocking flows on>) Karzanov
1983 dynamic trees O(m n log n) Sleator-Tarjan
1985 improved capacity scaling O(m n log C) Gabow
1988 push-relabel O(m n log (n*/ m)) Goldberg-Tarjan
1998 binary blocking flows O(m*? log (n* / m) log C) Goldberg-Rao
2013 compact networks O(m n) Orlin

2014 interior-point methods O(mn'? log C) Lee-Sidford
2016 electrical flows Om'"" C'7y Madry
20xx 299

[*) © ®

max-flow algorithms with m edges, n nodes, and integer capacities between 1 and C

52

Maximum-flow algorithms: practice

Push-relabel algorithm (SECTION 7.4). [Goldberg-Tarjan 1988]
Increases flow one edge at a time instead of one augmenting path at a time.

A New Approach to the Maximum-Flow Problem

ANDREW V. GOLDBERG
Massachusetts Institute of Technology, Cambridge, Massachusetts

AND
ROBERT E. TARJAN

Princeton University, Princeton, New Jersey, and AT&T Bell Laboratories, Murray Hill, New Jersey

Abstract. All previously known efficient maximum-flow algorithms work by finding augmenting paths,
either one path at a time (as in the original Ford and Fulkerson algorithm) or all shortest-length
augmenting paths at once (using the layered network approach of Dinic). An alternative method based
on the preflow concept of Karzanov is introduced. A preflow is like a flow, except that the total amount
flowing into a vertex is allowed to exceed the total amount flowing out. The method maintains a preflow
in the original network and pushes local flow excess toward the sink along what are estimated to be
shortest paths. The algorithm and its analysis are simple and intuitive, yet the algorithm runs as fast as
any other known method on dense graphs, achieving an O(»n*) time bound on an n-vertex graph. By
incorporating the dynamic tree data structure of Sleator and Tarjan, we obtain a version of the algorithm
running in O(nm log(n*/m)) time on an n-vertex, m-edge graph. This is as fast as any known method
for any graph density and faster on graphs of moderate density. The algorithm also admits efficient
distributed and parallel implementations. A parallel implementation running in O(n’log n) time using
n processors and O(m) space is obtained. This time bound matches that of the Shiloach-Vishkin
algorithm, which also uses n processors but requires O(n?) space.

Maximum-flow algorithms: practice

Caveat. Worst-case running time is generally not useful for predicting or
comparing max-flow algorithm performance in practice.

Best in practice. Push-relabel method with gap relabeling: O@’?) in practice.

On Implementing Push-Relabel Method
for the Maximum Flow Problem

EUROPEAN
4 JOURNAL
X OF OPERATIONAL
Boris V. Cherkassky! and Andrew V. Goldberg? «Ariikiine RESEARCH
ELSEVIER European Journal of Operational Research 97 (1997) 509-542
! Central Institute for Economics and Mathematics,
Krasikova St. 32, 117418, Moscow, Russia
cher@cemi.msk.su
2 Computer Science Department, Stanford University ThCOI'y and Methodology
Stanford, CA 94305, USA . .
goldbery@cs.stanford. edu Computational investigations of maximum flow algorithms

Ravindra K. Ahuja *, Murali Kodialam °, Ajay K. Mishra ¢, James B. Orlin *"

Abstract. We study efficient implementations of the push-relabel method . . A o) _ _ ,
Department of Industrial and Management Engineering, Indian Institute of Technology, Kanpur, 208 016, Indiu

for the maximum flow problem. The resulting codes are faster than the b AT & T Bell Laboratories. Holmdel. NJ 07733, USA
PreVIOUS codes, am'i mgch faster qn §ome pr().blem f?,mllles. The .speedup ¢ KATZ Graduate School of Business, University of Pittsburgh. Pittsburgh, PA 15260, USA
15 due to the combination of heuristics used in our implementations. We ¢ Sloun School of Management. Massachusetts Institute of Technology, Cambridge, MA 02139, USA

also exhibit a family of problems for which the running time of all known

methods seem to have a roughly quadratic growth rate. Received 30 August 1995; accepted 27 June 1996

Maximum-flow algorithms: practice

Computer vision. Different algorithms work better for some dense

problems that arise in applications to computer vision.

An Experimental Comparison of
Min-Cut/Max-Flow Algorithms for
Energy Minimization in Vision

Yuri Boykov and Vladimir Kolmogorov*

Abstract

After [15, 31, 19, 8, 25, 5] minimum cut/maximum flow algorithms on graphs emerged as
an increasingly useful tool for exact or approximate energy minimization in low-level vision.
The combinatorial optimization literature provides many min-cut/max-flow algorithms with
different polynomial time complexity. Their practical efficiency, however, has to date been
studied mainly outside the scope of computer vision. The goal of this paper is to provide an
experimental comparison of the efficiency of min-cut/max flow algorithms for applications
in vision. We compare the running times of several standard algorithms, as well as a
new algorithm that we have recently developed. The algorithms we study include both
Goldberg-Tarjan style “push-relabel” methods and algorithms based on Ford-Fulkerson
style “augmenting paths”. We benchmark these algorithms on a number of typical graphs
in the contexts of image restoration, stereo, and segmentation. In many cases our new
algorithm works several times faster than any of the other methods making near real-time
performance possible. An implementation of our max-flow/min-cut algorithm is available

upon request for research purposes.

VERMA, BATRA: MAXFLOW REVISITED

MaxFlow Revisited:
An Empirical Comparison of Maxflow
Algorithms for Dense Vision Problems

Tanmay Verma [IT-Delhi

tanmay08054@iiitd.ac.in Delhi, India

Dhruv Batra TTI-Chicago

dbatra@ttic.edu Chicago, USA
Abstract

Algorithms for finding the maximum amount of flow possible in a network (or max-
flow) play a central role in computer vision problems. We present an empirical compari-
son of different max-flow algorithms on modern problems. Our problem instances arise
from energy minimization problems in Object Category Segmentation, Image Deconvo-
lution, Super Resolution, Texture Restoration, Character Completion and 3D Segmen-
tation. We compare 14 different implementations and find that the most popularly used
implementation of Kolmogorov [5] is no longer the fastest algorithm available, especially
for dense graphs.

55

Maximum-flow algorithms: Matlab

4\ MathWorks:

Documentation

— CONTENTS

maxflow R2018a
Maximum flow in graph collapse all in page
Syntax

mf = maxflow(G,s,t)

mf = maxflow(G,s,t,algorithm)
[mf,GF] = maxflow(__)
[mf,GF,cs,ct] = maxflow(__)

Description
mf = maxflow(G,s,t) returns the maximum flow between nodes s and t. If graph G is unweighted example
(that is, G. Edges does not contain the variable Weight), then maxf low treats all graph edges as
having a weight equal to 1.
example

mf = maxflow(G,s,t,algorithm) specifies the maximum flow algorithm to use. This syntax is
only available if G is a directed graph.

56

Maximum-flow algorithms: Google

0 Google Optimization Tools Q, SIGNIN

Products » Optimization » Reference <>
<
Contents Java

classes @ python’

C++ Reference: max_flow

This documentation is automatically generated.

An implementation of a push-relabel algorithm for the max flow problem.

In the following, we consider a graph G = (V,E,s,t) where V denotes the set of nodes (vertices) in
the graph, E denotes the set of arcs (edges). s and t denote distinguished nodes in G called
source and target. n = |V| denotes the number of nodes in the graph, and m = |E| denotes the

number of arcs in the graph.

Each arc (v,w) is associated a capacity c(v,w).

57

