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Network Flow

• Network flow:


• graph G=(V,E). 


• Special vertices s (source) and t (sink).


• Every edge e has a capacity c(e) ≥ 0.


• Flow: 


• capacity constraint: every edge e has a flow 0 ≤ f(e) ≤ c(e).


• flow conservation: for all u ≠ s, t: flow into u equals flow out of u.


• Value of flow f is the sum of flows out of s minus sum of flows into s: 


• Maximum flow problem: find s-t flow of maximum value 
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Today

• Applications


• Finding good augmenting paths.  Edmonds-Karp and scaling algorithm.
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• Find (any) augmenting path and use it.


• Augmenting path (definition different than in CLRS): s-t path where


• forward edges have leftover capacity


• backwards edges have positive flow


• Can add extra flow: min(c1 - f1, f2, c3 - f3, c4 - f4, f5, f6) = δ


• To find augmenting path use DFS or BFS:
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• Integral capacities: 

• Each augmenting path increases flow with at least 1. 

• At most v(f) iterations

• Find augmenting path via DFS/BFS: O(m)

• Total running time: O(v(f) m)


• Lemma. If all the capacities are integers, then there is a maximum flow where the 
flow on every edge is an integer.


• Bad example for Ford-Fulkerson:

Ford-Fulkerson
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• Find shortest augmenting path and use it.


• Augmenting path (definition different than in CLRS): s-t path where


• forward edges have leftover capacity


• backwards edges have positive flow


• Can add extra flow: min(c1 - f1, f2, c3 - f3, c4 - f4, f5, f6) = δ


• To find augmenting path use BFS:

Edmonds-Karp
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• Find shortest augmenting path and use it.


• Augmenting path (definition different than in CLRS): s-t path where


• forward edges have leftover capacity


• backwards edges have positive flow


• Can add extra flow: min(c1 - f1, f2, c3 - f3, c4 - f4, f5, f6) = δ


• To find augmenting path use BFS:
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• Find shortest augmenting path and use it.


• Augmenting path (definition different than in CLRS): s-t path where


• forward edges have leftover capacity


• backwards edges have positive flow


• Can add extra flow: min(c1 - f1, f2, c3 - f3, c4 - f4, f5, f6) = δ


• To find augmenting path use BFS:
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• Find shortest augmenting path and use it.


• Augmenting path (definition different than in CLRS): s-t path where


• forward edges have leftover capacity


• backwards edges have positive flow


• Can add extra flow: min(c1 - f1, f2, c3 - f3, c4 - f4, f5, f6) = δ


• To find augmenting path use BFS:
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• Find shortest augmenting path and use it.


• Augmenting path (definition different than in CLRS): s-t path where


• forward edges have leftover capacity


• backwards edges have positive flow


• Can add extra flow: min(c1 - f1, f2, c3 - f3, c4 - f4, f5, f6) = δ


• To find augmenting path use BFS:

Edmonds-Karp
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• When there are no more augmenting s-t paths:

• Find all augmenting paths from s.

• The nodes S that can be reached by these augmenting paths form the left side of a 

minimum cut.

• edges out of S have ce = fe.

• edges into S have  fe = 0. 

• Capacity of the cut equals the flow. 

Find a minimum cut
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• Scaling parameter Δ

• Only consider edges with capacity at least Δ in residual graph Gf(Δ).

• Example: Δ = 4

Scaling algorithm

Gf(4)
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Scaling algorithm
• Scaling parameter Δ

• Only consider edges with capacity at least Δ in residual graph Gf(Δ).

• Start with Δ = “highest power of 2 ≤ largest capacity out of s”
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Scaling algorithm
• Scaling parameter Δ

• Only consider edges with capacity at least Δ in residual graph Gf(Δ).

• Start with Δ = “highest power of 2 ≤ largest capacity out of s”
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Scaling algorithm
• Scaling parameter Δ

• Only consider edges with capacity at least Δ in residual graph Gf(Δ).

• Start with Δ = “highest power of 2 ≤ largest capacity out of s”
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Scaling algorithm
• Scaling parameter Δ

• Only consider edges with capacity at least Δ in residual graph Gf(Δ).

• Start with Δ = “highest power of 2 ≤ largest capacity out of s”

6 9

4
1

1 8

4

3

2
5

Δ = 8

9

9

s t

16



Scaling algorithm
• Scaling parameter Δ

• Only consider edges with capacity at least Δ in residual graph Gf(Δ).

• Start with Δ = “highest power of 2 ≤ largest capacity out of s”

• When no more augmenting paths in Gf(Δ): Δ = Δ/2 (new phase).
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Scaling algorithm
• Scaling parameter Δ

• Only consider edges with capacity at least Δ in residual graph Gf(Δ).

• Start with Δ = “highest power of 2 ≤ largest capacity out of s”

• When no more augmenting paths in Gf(Δ): Δ = Δ/2 (new phase).
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Scaling algorithm
• Scaling parameter Δ

• Only consider edges with capacity at least Δ in residual graph Gf(Δ).

• Start with Δ = “highest power of 2 ≤ largest capacity out of s”

• When no more augmenting paths in Gf(Δ): Δ = Δ/2 (new phase).
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Scaling algorithm
• Scaling parameter Δ

• Only consider edges with capacity at least Δ in residual graph Gf(Δ).

• Start with Δ = “highest power of 2 ≤ largest capacity out of s”

• When no more augmenting paths in Gf(Δ): Δ = Δ/2 (new phase).
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Scaling algorithm
• Scaling parameter Δ

• Only consider edges with capacity at least Δ in residual graph Gf(Δ).

• Start with Δ = “highest power of 2 ≤ largest capacity out of s”

• When no more augmenting paths in Gf(Δ): Δ = Δ/2 (new phase).

2 9

4
5

1 4

4

3

2
1

Δ = 4

9

5

s t

4

4 4

21



Scaling algorithm
• Scaling parameter Δ

• Only consider edges with capacity at least Δ in residual graph Gf(Δ).

• Start with Δ = “highest power of 2 ≤ largest capacity out of s”

• When no more augmenting paths in Gf(Δ): Δ = Δ/2 (new phase).
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Scaling algorithm
• Scaling parameter Δ

• Only consider edges with capacity at least Δ in residual graph Gf(Δ).

• Start with Δ = “highest power of 2 ≤ largest capacity out of s”

• When no more augmenting paths in Gf(Δ): Δ = Δ/2 (new phase).
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Scaling algorithm
• Scaling parameter Δ

• Only consider edges with capacity at least Δ in residual graph Gf(Δ).

• Start with Δ = “highest power of 2 ≤ largest capacity out of s”

• When no more augmenting paths in Gf(Δ): Δ = Δ/2 (new phase).
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Scaling algorithm
• Scaling parameter Δ

• Only consider edges with capacity at least Δ in residual graph Gf(Δ).

• Start with Δ = “highest power of 2 ≤ largest capacity out of s”

• When no more augmenting paths in Gf(Δ): Δ = Δ/2 (new phase).
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Scaling algorithm
• Scaling parameter Δ

• Only consider edges with capacity at least Δ in residual graph Gf(Δ).

• Start with Δ = “highest power of 2 ≤ largest capacity out of s”

• When no more augmenting paths in Gf(Δ): Δ = Δ/2 (new phase).
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Scaling algorithm
• Scaling parameter Δ

• Only consider edges with capacity at least Δ in residual graph Gf(Δ).

• Start with Δ = “highest power of 2 ≤ largest capacity out of s”

• When no more augmenting paths in Gf(Δ): Δ = Δ/2 (new phase).
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Scaling algorithm
• Scaling parameter Δ

• Only consider edges with capacity at least Δ in residual graph Gf(Δ).

• Start with Δ = “highest power of 2 ≤ largest capacity out of s”

• When no more augmenting paths in Gf(Δ): Δ = Δ/2 (new phase).
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Scaling algorithm
• Scaling parameter Δ

• Only consider edges with capacity at least Δ in residual graph Gf(Δ).

• Start with Δ = “highest power of 2 ≤ largest capacity out of s”

• When no more augmenting paths in Gf(Δ): Δ = Δ/2 (new phase).
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Scaling algorithm
• Scaling parameter Δ

• Only consider edges with capacity at least Δ in residual graph Gf(Δ).

• Start with Δ = “highest power of 2 ≤ largest capacity out of s”

• When no more augmenting paths in Gf(Δ): Δ = Δ/2 (new phase).


• Stop when no more augmenting paths in Gf(1).
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Scaling algorithm
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Scaling algorithm
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Scaling algorithm
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Scaling algorithm
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Scaling algorithm
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Exercise
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• Running time: O(m2 log C), where C is the largest capacity out of s.


• Lemma 1. Number of scaling phases: 1 +⎡lg C⎤


• Lemma 2. Let f the flow when Δ-scaling phase ends, and let f*be the maximum flow. 
Then v(f*) ≤ v(f) + mΔ.


• Lemma 3. The number of augmentations in a scaling phase is at most 2m.

• First phase: can use each edge out of s in at most one augmenting path.

• f flow at the end of previous phase. 

• Used Δ’ = 2Δ in last round.

• Lemma 2: v(f*) ≤ v(f) + mΔ’ = v(f) + 2mΔ.

• “Leftover flow” to be found ≤ 2mΔ.

• Each agumentation in a Δ-scaling phase augments flow with at least Δ.

Scaling algorithm
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• Lemma 2. Let f the flow when Δ-scaling phase ends, and let f*be the maximum flow. 
Then v(f*) ≤ v(f) + mΔ. 

• By the end of the phase there is a cut c(S,T) ≤ v(f) + mΔ.

Scaling algorithm

s t
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c(e)-f(e) < Δ

f(e) < Δ
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c(S, T ) = c(e1) + c(e3) + c(e7)

v( f ) = f(e1) + f(e3) + f(e7) − f(e2) − f(e5)

c(S, T ) − v( f ) = c(e1) + c(e3) + c(e7) − f(e1) − f(e3) − f(e7) + f(e2) + f(e5)

= c(e1) − f(e1) + c(e3) − f(e3) + c(e7) − f(e7) + f(e2) + f(e5)

< Δ + Δ + Δ + Δ + Δ = 5Δ
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• Edmonds-Karp: O(m2n)

• Scaling: O(m2 log C)

• Ford-Fulkerson O(m v(f)).

• Preflow-push O(n3)

• Other algorithms: O(mn log n) or O(min(n2/3, m1/2)m log n log U).

Maximum flow algorithms
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• Bipartite graph: Can color vertices red and blue such that all edges have a red and a 
blue endpoint.


• Matching: Subset of edges M ⊆ E such that no edges in M share an endpoint.

• Maximum matching: matching of maximum cardinality.


• Applications:

• planes to routes

• jobs to workers/machines

Maximum Bipartite Matching

Matching Maximum matching

matched
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• Bipartite graph: Can color vertices red and blue such that all edges have a red and a 
blue endpoint.


• Matching: Subset of edges M ⊆ E such that no edges in M share an endpoint.

• Maximum matching: matching of maximum cardinality.


• Solve via flow:

Maximum Bipartite Matching
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• Bipartite graph: Can color vertices red and blue such that all edges have a red and a 
blue endpoint.


• Matching: Subset of edges M ⊆ E such that no edges in M share an endpoint.

• Maximum matching: matching of maximum cardinality.


• Solve via flow: 

• Matching M => flow of value |M|

Maximum Bipartite Matching
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• Bipartite graph: Can color vertices red and blue such that all edges have a red and a 
blue endpoint.


• Matching: Subset of edges M ⊆ E such that no edges in M share an endpoint.

• Maximum matching: matching of maximum cardinality.


• Solve via flow:

• Matching M => flow of value |M|

Maximum Bipartite Matching
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• Bipartite graph: Can color vertices red and blue such that all edges have a red and a 
blue endpoint.


• Matching: Subset of edges M ⊆ E such that no edges in M share an endpoint.

• Maximum matching: matching of maximum cardinality.


• Solve via flow:

• Matching M => flow of value |M|
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• Bipartite graph: Can color vertices red and blue such that all edges have a red and a 
blue endpoint.


• Matching: Subset of edges M ⊆ E such that no edges in M share an endpoint.

• Maximum matching: matching of maximum cardinality.


• Solve via flow:

• Matching M => flow of value |M|

• Flow of value v(f) => matching of size v(f)
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• Bipartite graph: Can color vertices red and blue such that all edges have a red and a 
blue endpoint.


• Matching: Subset of edges M ⊆ E such that no edges in M share an endpoint.

• Maximum matching: matching of maximum cardinality.


• Solve via flow:

• Can generalize to general matchings
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• X doctors, Y holidays, each doctor should work at at most 1 holiday, each doctor is 
available at some of the holidays.


• Same problem, but each doctor should work at most c holidays?

Scheduling of doctors

Doctors Holidays
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• X doctors, Y holidays, each doctor should work at at most c holidays, each doctor is 
available at some of the holidays.


• Same problem, but each doctor should work at most one day in each vacation 
period?

Scheduling of doctors
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• X doctors, Y holidays, each doctor should work at at most c holidays, each doctor is 
available at some of the holidays.


• Same problem, but each doctor should work at most one day in each vacation 
period?

Scheduling of doctors
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• X doctors, Y holidays, each doctor should work at at most c holidays, each doctor is 
available at some of the holidays.


• Same problem, but each doctor should work at most one day in each vacation 
period?

Scheduling of doctors
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• Problem: Find maximum number of edge-disjoint paths from s to t. 

• Two paths are edge-disjoint if they have no edge in common.

Edge Disjoint paths

s t
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• Edge-disjoint path problem. Find the maximum number of edge-disjoint paths from 
s to t. 


• Two paths are edge-disjoint if they have no edge in common.

Edge Disjoint paths

s t
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• Reduction to max flow: assign capacity 1 to each edge.


• Thm. Max number of edge-disjoint s-t paths is equal to the value of a maximum 
flow.

• Suppose there are k edge-disjoint paths: then there is a flow of k (let all edges on 

the paths have flow 1).

• Other way (graph theory course).


• Ford-Fulkerson: v(f) ≤ n (no multiple edges and therefore at most n edges out of s) 
=> running time O(nm).

Edge Disjoint Paths
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• Network connectivity. Find minimum number of edges whose removal disconnects t 
from s (destroys all s-t paths). 

Network Connectivity
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• Network connectivity. Find minimum number of edges whose removal disconnects t 
from s (destroys all s-t paths). 


• Set all capacities to 1 and find minimum cut.

• Thm. (Menger) The maximum number of edge-disjoint s-t paths is equal to the 

minimum number of edges whose removal disconnects t from s. 

Network Connectivity
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• Question: Can Boston finish in first place (or in tie of first place)?


• No: Boston must win both its remaining 2 and NY must loose. But then Baltimore 
and Toronto both beat NY so winner of Baltimore-Toronto will get 93 points.


• Other argument: Boston can finish with at most 92. Cumulatively the other three 
teams have 274 wins currently and their 3 games against each other will give 
another 3 points => 277. 277/3 = 92,33333 => one of them must win > 92.

Baseball elimination 

56

Team Wins Games 
left

Against

NY Bal Tor Bos

New York 92 2 - 1 1 0
Baltimore 91 3 1 - 1 1
Toronto 91 3 1 1 - 1
Boston 90 2 0 1 1 -



Baseball elimination 

57

Team Wins Games 
left

Against

NY Bal Tor Bos

New York 90 11 - 1 6 4
Baltimore 88 6 1 - 1 4
Toronto 87 11 6 1 - 4
Boston 79 12 4 4 4 -

• Question: Can Boston finish in first place (or in tie of first place)?

s t

NY-Bal

NY-Tor

Tor-Bal

NY

Bal

Tor

1
6
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∞
1

= 91-90

Boston can get at most 79 + 12 = 91 points
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• Boston is eliminated ⇔ max s-t flow < 8.



• Capacities on nodes.

Node capacities
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