Network Flow II

Inge Li Gørtz

KT 7.3, 7.5, 7.6

## Network Flow

- Network flow:
- graph $G=(V, E)$.
- Special vertices s (source) and $t$ (sink).
- Every edge e has a capacity $c(e) \geq 0$.
- Flow:

- capacity constraint: every edge $e$ has a flow $0 \leq f(e) \leq c(e)$.
- flow conservation: for all $u \neq s$, t : flow into u equals flow out of $u$.

$$
\sum_{v:(v, u) \in E} f(v, u)=\sum_{v:(u, v) \in E} f(u, v)
$$



- Value of flow $f$ is the sum of flows out of $s$ minus sum of flows into $s$ :

$$
v(f)=\sum_{v:(s, v) \in E} f(e)-\sum_{v:(v, s) \in E} f(e)=f^{\text {out }}(s)-f^{\text {in }}(s)
$$

- Maximum flow problem: find s-t flow of maximum value


## Today

- Applications
- Finding good augmenting paths. Edmonds-Karp and scaling algorithm.


## Ford-Fulkerson

- Find (any) augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
- forward edges have leftover capacity
- backwards edges have positive flow

- Can add extra flow: $\min \left(c_{1}-f_{1}, f_{2}, c_{3}-f_{3}, c_{4}-f_{4}, f_{5}, f_{6}\right)=\delta$
- To find augmenting path use DFS or BFS:



## Ford-Fulkerson

- Integral capacities:
- Each augmenting path increases flow with at least 1.
- At most $v(f)$ iterations
- Find augmenting path via DFS/BFS: $O(m)$
- Total running time: $\mathrm{O}(\mathrm{v}(\mathrm{f}) \mathrm{m})$
- Lemma. If all the capacities are integers, then there is a maximum flow where the flow on every edge is an integer.
- Bad example for Ford-Fulkerson:



## Edmonds-Karp

- Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
- forward edges have leftover capacity
- backwards edges have positive flow

- Can add extra flow: $\min \left(\mathrm{c}_{1}-\mathrm{f}_{1}, \mathrm{f}_{2}, \mathrm{c}_{3}-\mathrm{f}_{3}, \mathrm{c}_{4}-\mathrm{f}_{4}, \mathrm{f}_{5}, \mathrm{f}_{6}\right)=\delta$
- To find augmenting path use BFS:



## Edmonds-Karp

- Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
- forward edges have leftover capacity
- backwards edges have positive flow

- Can add extra flow: $\min \left(\mathrm{c}_{1}-\mathrm{f}_{1}, \mathrm{f}_{2}, \mathrm{c}_{3}-\mathrm{f}_{3}, \mathrm{c}_{4}-\mathrm{f}_{4}, \mathrm{f}_{5}, \mathrm{f}_{6}\right)=\delta$
- To find augmenting path use BFS:



## Edmonds-Karp

- Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
- forward edges have leftover capacity
- backwards edges have positive flow

- Can add extra flow: $\min \left(\mathrm{c}_{1}-\mathrm{f}_{1}, \mathrm{f}_{2}, \mathrm{c}_{3}-\mathrm{f}_{3}, \mathrm{c}_{4}-\mathrm{f}_{4}, \mathrm{f}_{5}, \mathrm{f}_{6}\right)=\delta$
- To find augmenting path use BFS:



## Edmonds-Karp

- Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
- forward edges have leftover capacity
- backwards edges have positive flow

- Can add extra flow: $\min \left(\mathrm{c}_{1}-\mathrm{f}_{1}, \mathrm{f}_{2}, \mathrm{c}_{3}-\mathrm{f}_{3}, \mathrm{c}_{4}-\mathrm{f}_{4}, \mathrm{f}_{5}, \mathrm{f}_{6}\right)=\delta$
- To find augmenting path use BFS:



## Edmonds-Karp

- Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
- forward edges have leftover capacity
- backwards edges have positive flow

- Can add extra flow: $\min \left(\mathrm{c}_{1}-\mathrm{f}_{1}, \mathrm{f}_{2}, \mathrm{c}_{3}-\mathrm{f}_{3}, \mathrm{c}_{4}-\mathrm{f}_{4}, \mathrm{f}_{5}, \mathrm{f}_{6}\right)=\delta$
- To find augmenting path use BFS:



## Find a minimum cut

- When there are no more augmenting s-t paths:
- Find all augmenting paths from s.
- The nodes $S$ that can be reached by these augmenting paths form the left side of a minimum cut.
- edges out of $S$ have $c_{e}=f_{e}$.
- edges into $S$ have $f_{e}=0$.
- Capacity of the cut equals the flow.



## Scaling algorithm

- Scaling parameter $\Delta$
- Only consider edges with capacity at least $\Delta$ in residual graph $\mathrm{G}_{\mathrm{f}}(\Delta)$.
- Example: $\Delta=4$

$\mathrm{G}_{\mathrm{f}}(4)$



## Scaling algorithm

- Scaling parameter $\Delta$
- Only consider edges with capacity at least $\Delta$ in residual graph $\mathrm{G}_{\mathrm{f}}(\Delta)$.
- Start with $\Delta=$ "highest power of $2 \leq$ largest capacity out of s"



## Scaling algorithm

- Scaling parameter $\Delta$
- Only consider edges with capacity at least $\Delta$ in residual graph $\mathrm{G}_{\mathrm{f}}(\Delta)$.
- Start with $\Delta=$ "highest power of $2 \leq$ largest capacity out of s"



## Scaling algorithm

- Scaling parameter $\Delta$
- Only consider edges with capacity at least $\Delta$ in residual graph $\mathrm{G}_{\mathrm{f}}(\Delta)$.
- Start with $\Delta=$ "highest power of $2 \leq$ largest capacity out of s"



## Scaling algorithm

- Scaling parameter $\Delta$
- Only consider edges with capacity at least $\Delta$ in residual graph $\mathrm{G}_{\mathrm{f}}(\Delta)$.
- Start with $\Delta=$ "highest power of $2 \leq$ largest capacity out of s"



## Scaling algorithm

- Scaling parameter $\Delta$
- Only consider edges with capacity at least $\Delta$ in residual graph $\mathrm{G}_{\mathrm{f}}(\Delta)$.
- Start with $\Delta=$ "highest power of $2 \leq$ largest capacity out of s"
- When no more augmenting paths in $\mathrm{G}_{\mathfrak{f}}(\Delta): \Delta=\Delta / 2$ (new phase).



## Scaling algorithm

- Scaling parameter $\Delta$
- Only consider edges with capacity at least $\Delta$ in residual graph $\mathrm{G}_{\mathrm{f}}(\Delta)$.
- Start with $\Delta=$ "highest power of $2 \leq$ largest capacity out of s"
- When no more augmenting paths in $\mathrm{G}_{\mathrm{f}}(\Delta): \Delta=\Delta / 2$ (new phase).



## Scaling algorithm

- Scaling parameter $\Delta$
- Only consider edges with capacity at least $\Delta$ in residual graph $\mathrm{G}_{\mathrm{f}}(\Delta)$.
- Start with $\Delta=$ "highest power of $2 \leq$ largest capacity out of s"
- When no more augmenting paths in $\mathrm{G}_{\mathrm{f}}(\Delta): \Delta=\Delta / 2$ (new phase).



## Scaling algorithm

- Scaling parameter $\Delta$
- Only consider edges with capacity at least $\Delta$ in residual graph $\mathrm{G}_{\mathrm{f}}(\Delta)$.
- Start with $\Delta=$ "highest power of $2 \leq$ largest capacity out of s"
- When no more augmenting paths in $\mathrm{G}_{\mathrm{f}}(\Delta): \Delta=\Delta / 2$ (new phase).



## Scaling algorithm

- Scaling parameter $\Delta$
- Only consider edges with capacity at least $\Delta$ in residual graph $\mathrm{G}_{\mathrm{f}}(\Delta)$.
- Start with $\Delta=$ "highest power of $2 \leq$ largest capacity out of s"
- When no more augmenting paths in $\mathrm{G}_{\mathrm{f}}(\Delta): \Delta=\Delta / 2$ (new phase).



## Scaling algorithm

- Scaling parameter $\Delta$
- Only consider edges with capacity at least $\Delta$ in residual graph $\mathrm{G}_{\mathrm{f}}(\Delta)$.
- Start with $\Delta=$ "highest power of $2 \leq$ largest capacity out of s"
- When no more augmenting paths in $\mathrm{G}_{\mathrm{f}}(\Delta): \Delta=\Delta / 2$ (new phase).



## Scaling algorithm

- Scaling parameter $\Delta$
- Only consider edges with capacity at least $\Delta$ in residual graph $\mathrm{G}_{\mathrm{f}}(\Delta)$.
- Start with $\Delta=$ "highest power of $2 \leq$ largest capacity out of s"
- When no more augmenting paths in $\mathrm{G}_{\mathrm{f}}(\Delta): \Delta=\Delta / 2$ (new phase).



## Scaling algorithm

- Scaling parameter $\Delta$
- Only consider edges with capacity at least $\Delta$ in residual graph $\mathrm{G}_{\mathrm{f}}(\Delta)$.
- Start with $\Delta=$ "highest power of $2 \leq$ largest capacity out of s"
- When no more augmenting paths in $\mathrm{G}_{\mathrm{f}}(\Delta): \Delta=\Delta / 2$ (new phase).



## Scaling algorithm

- Scaling parameter $\Delta$
- Only consider edges with capacity at least $\Delta$ in residual graph $\mathrm{G}_{\mathrm{f}}(\Delta)$.
- Start with $\Delta=$ "highest power of $2 \leq$ largest capacity out of s"
- When no more augmenting paths in $\mathrm{G}_{\mathrm{f}}(\Delta): \Delta=\Delta / 2$ (new phase).



## Scaling algorithm

- Scaling parameter $\Delta$
- Only consider edges with capacity at least $\Delta$ in residual graph $\mathrm{G}_{\mathrm{f}}(\Delta)$.
- Start with $\Delta=$ "highest power of $2 \leq$ largest capacity out of s"
- When no more augmenting paths in $\mathrm{G}_{\mathrm{f}}(\Delta): \Delta=\Delta / 2$ (new phase).



## Scaling algorithm

- Scaling parameter $\Delta$
- Only consider edges with capacity at least $\Delta$ in residual graph $\mathrm{G}_{\mathrm{f}}(\Delta)$.
- Start with $\Delta=$ "highest power of $2 \leq$ largest capacity out of s"
- When no more augmenting paths in $\mathrm{G}_{\mathrm{f}}(\Delta): \Delta=\Delta / 2$ (new phase).



## Scaling algorithm

- Scaling parameter $\Delta$
- Only consider edges with capacity at least $\Delta$ in residual graph $\mathrm{G}_{\mathrm{f}}(\Delta)$.
- Start with $\Delta=$ "highest power of $2 \leq$ largest capacity out of s"
- When no more augmenting paths in $\mathrm{G}_{\mathrm{f}}(\Delta): \Delta=\Delta / 2$ (new phase).



## Scaling algorithm

- Scaling parameter $\Delta$
- Only consider edges with capacity at least $\Delta$ in residual graph $\mathrm{G}_{\mathrm{f}}(\Delta)$.
- Start with $\Delta=$ "highest power of $2 \leq$ largest capacity out of s"
- When no more augmenting paths in $\mathrm{G}_{\mathrm{f}}(\Delta): \Delta=\Delta / 2$ (new phase).



## Scaling algorithm

- Scaling parameter $\Delta$
- Only consider edges with capacity at least $\Delta$ in residual graph $\mathrm{G}_{\mathrm{f}}(\Delta)$.
- Start with $\Delta=$ "highest power of $2 \leq$ largest capacity out of s"
- When no more augmenting paths in $\mathrm{G}_{\mathrm{f}}(\Delta): \Delta=\Delta / 2$ (new phase).

- Stop when no more augmenting paths in $\mathrm{G}_{\mathrm{f}}(1)$.


## Scaling algorithm



Exercise


## Scaling algorithm

- Running time: $\mathrm{O}\left(\mathrm{m}^{2} \log \mathrm{C}\right)$, where C is the largest capacity out of s .
- Lemma 1. Number of scaling phases: $1+\lceil\lg C\rceil$
- Lemma 2. Let $f$ the flow when $\Delta$-scaling phase ends, and let f*be the maximum flow. Then $v\left(f^{*}\right) \leq v(f)+m \Delta$.
- Lemma 3. The number of augmentations in a scaling phase is at most $2 m$.
- First phase: can use each edge out of $s$ in at most one augmenting path.
- f flow at the end of previous phase.
- Used $\Delta^{\prime}=2 \Delta$ in last round.
- Lemma 2: $\mathrm{v}\left(\mathrm{f}^{*}\right) \leq \mathrm{v}(\mathrm{f})+\mathrm{m} \Delta^{\prime}=\mathrm{v}(\mathrm{f})+2 \mathrm{~m} \Delta$.
- "Leftover flow" to be found $\leq 2 m \Delta$.
- Each agumentation in a $\Delta$-scaling phase augments flow with at least $\Delta$.


## Scaling algorithm

- Lemma 2. Let $f$ the flow when $\Delta$-scaling phase ends, and let f*be the maximum flow. Then $v\left(f^{*}\right) \leq v(f)+m \Delta$.
- By the end of the phase there is a cut $c(S, T) \leq v(f)+m \Delta$.


$$
\begin{aligned}
c(S, T)-v(f) & =c\left(e_{1}\right)+c\left(e_{3}\right)+c\left(e_{7}\right)-f\left(e_{1}\right)-f\left(e_{3}\right)-f\left(e_{7}\right)+f\left(e_{2}\right)+f\left(e_{5}\right) \\
& =c\left(e_{1}\right)-f\left(e_{1}\right)+c\left(e_{3}\right)-f\left(e_{3}\right)+c\left(e_{7}\right)-f\left(e_{7}\right)+f\left(e_{2}\right)+f\left(e_{5}\right) \\
& <\Delta+\Delta+\Delta+\Delta+\Delta=5 \Delta
\end{aligned}
$$

## Maximum flow algorithms

- Edmonds-Karp: O(m²n)
- Scaling: O(m² $\log \mathrm{C})$
- Ford-Fulkerson O(m v(f)).
- Preflow-push O( $\mathrm{n}^{3}$ )
- Other algorithms: $O(m n \log n)$ or $O\left(m i n\left(n^{2 / 3}, m^{1 / 2}\right) m \log n \log U\right)$.


## Maximum Bipartite Matching

- Bipartite graph: Can color vertices red and blue such that all edges have a red and a blue endpoint.
- Matching: Subset of edges $\mathrm{M} \subseteq E$ such that no edges in $M$ share an endpoint.
- Maximum matching: matching of maximum cardinality.
- Applications:
- planes to routes
- jobs to workers/machines


Maximum matching


## Maximum Bipartite Matching

- Bipartite graph: Can color vertices red and blue such that all edges have a red and a blue endpoint.
- Matching: Subset of edges $\mathrm{M} \subseteq E$ such that no edges in $M$ share an endpoint.
- Maximum matching: matching of maximum cardinality.
- Solve via flow:



## Maximum Bipartite Matching

- Bipartite graph: Can color vertices red and blue such that all edges have a red and a blue endpoint.
- Matching: Subset of edges $\mathrm{M} \subseteq E$ such that no edges in $M$ share an endpoint.
- Maximum matching: matching of maximum cardinality.
- Solve via flow:
- Matching $M$ => flow of value $|M|$



## Maximum Bipartite Matching

- Bipartite graph: Can color vertices red and blue such that all edges have a red and a blue endpoint.
- Matching: Subset of edges $\mathrm{M} \subseteq E$ such that no edges in $M$ share an endpoint.
- Maximum matching: matching of maximum cardinality.
- Solve via flow:
- Matching $M$ => flow of value $|M|$



## Maximum Bipartite Matching

- Bipartite graph: Can color vertices red and blue such that all edges have a red and a blue endpoint.
- Matching: Subset of edges $\mathrm{M} \subseteq E$ such that no edges in $M$ share an endpoint.
- Maximum matching: matching of maximum cardinality.
- Solve via flow:
- Matching $M$ => flow of value $|M|$



## Maximum Bipartite Matching

- Bipartite graph: Can color vertices red and blue such that all edges have a red and a blue endpoint.
- Matching: Subset of edges $\mathrm{M} \subseteq E$ such that no edges in $M$ share an endpoint.
- Maximum matching: matching of maximum cardinality.
- Solve via flow:
- Matching $\mathrm{M}=>$ flow of value $|\mathrm{M}|$
- Flow of value $v(f)=>$ matching of size $v(f)$



## Maximum Bipartite Matching

- Bipartite graph: Can color vertices red and blue such that all edges have a red and a blue endpoint.
- Matching: Subset of edges $\mathrm{M} \subseteq E$ such that no edges in $M$ share an endpoint.
- Maximum matching: matching of maximum cardinality.
- Solve via flow:
- Can generalize to general matchings



## Scheduling of doctors

- X doctors, Y holidays, each doctor should work at at most 1 holiday, each doctor is available at some of the holidays.

- Same problem, but each doctor should work at most c holidays?


## Scheduling of doctors

- X doctors, Y holidays, each doctor should work at at most c holidays, each doctor is available at some of the holidays.

- Same problem, but each doctor should work at most one day in each vacation period?


## Scheduling of doctors

- X doctors, Y holidays, each doctor should work at at most c holidays, each doctor is available at some of the holidays.
- Same problem, but each doctor should work at most one day in each vacation period?



## Scheduling of doctors

- X doctors, Y holidays, each doctor should work at at most c holidays, each doctor is available at some of the holidays.
- Same problem, but each doctor should work at most one day in each vacation period?



## Edge Disjoint paths

- Problem: Find maximum number of edge-disjoint paths from sto $t$.
- Two paths are edge-disjoint if they have no edge in common.



## Edge Disjoint paths

- Edge-disjoint path problem. Find the maximum number of edge-disjoint paths from $s$ to $t$.
- Two paths are edge-disjoint if they have no edge in common.



## Edge Disjoint Paths

- Reduction to max flow: assign capacity 1 to each edge.

- Thm. Max number of edge-disjoint s-t paths is equal to the value of a maximum flow.
- Suppose there are $k$ edge-disjoint paths: then there is a flow of $k$ (let all edges on the paths have flow 1).
- Other way (graph theory course).
- Ford-Fulkerson: $\mathrm{v}(\mathrm{f}) \leq \mathrm{n}$ (no multiple edges and therefore at most n edges out of s ) => running time $\mathrm{O}(\mathrm{nm})$.


## Network Connectivity

- Network connectivity. Find minimum number of edges whose removal disconnects $t$ from s (destroys all s-t paths).



## Network Connectivity

- Network connectivity. Find minimum number of edges whose removal disconnects $t$ from s (destroys all s-t paths).

- Set all capacities to 1 and find minimum cut.
- Thm. (Menger) The maximum number of edge-disjoint s-t paths is equal to the minimum number of edges whose removal disconnects $t$ from $s$.


## Baseball elimination

| Team | Wins | Games <br> left |  |  | Against |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | NY | Bal | Tor | Bos |  |  |
|  | 92 | 2 | - | 1 | 1 | 0 |  |  |
| Baltimore | 91 | 3 | 1 | - | 1 | 1 |  |  |
| Toronto | 91 | 3 | 1 | 1 | - | 1 |  |  |
| Boston | 90 | 2 | 0 | 1 | 1 | - |  |  |

- Question: Can Boston finish in first place (or in tie of first place)?
- No: Boston must win both its remaining 2 and NY must loose. But then Baltimore and Toronto both beat NY so winner of Baltimore-Toronto will get 93 points.
- Other argument: Boston can finish with at most 92. Cumulatively the other three teams have 274 wins currently and their 3 games against each other will give another 3 points => 277. 277/3 = 92,33333 => one of them must win > 92 .


## Baseball elimination

| Team | Wins | Games <br> left |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | NY | Bal | Tor | Bos |
| New York |  | 11 | - | 1 | 6 | 4 |
| Baltimore | 88 | 6 | 1 | - | 1 | 4 |
| Toronto | 87 | 11 | 6 | 1 | - | 4 |
| Boston | 79 | 12 | 4 | 4 | 4 | - |

- Question: Can Boston finish in first place (or in tie of first place)?

- Boston is eliminated $\Leftrightarrow$ max s-t flow $<8$.


## Node capacities

- Capacities on nodes.


