Randomized Algorithms I

- Probability
- Contention Resolution
- Minimum Cut

Randomized Algorithms I

- Probability
- Contention Resolution
- Minimum Cut

Probability

- Probability spaces.
- Set of possible outcomes Ω.
- Each element $i \in \Omega$ has probability $p(i) \geq 0$ and $\sum_{i \in \Omega} p(i)=1$.
- Event E is a subset of Ω and probability of E is $\operatorname{Pr}(\mathrm{E})=\sum_{\mathrm{i} \in \mathrm{E}} \mathrm{p}(\mathrm{i})$.
- The complementary event \bar{E} is $\Omega-\bar{y}$ and $\operatorname{Pr}(\overline{\mathrm{E}})=1-\operatorname{Pr}(\mathrm{E})$.

$$
H=\text { heads } \quad T=\text { tails }
$$

- Example. Flip two fair coins.
- $\Omega=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}$.
- $p(i)=1 / 4$ for each outcome i.
- Event $\mathrm{E}=$ "the coins are the same"
- $\operatorname{Pr}(\overline{\mathrm{E}})=1 / 2$.

Probability

- Conditional probability.
- What is the probability that event E occurs given that event F occurred?
- The conditional probability of E given F:

$$
\operatorname{Pr}(E \mid F)=\frac{\operatorname{Pr}(E \cap F)}{\operatorname{Pr}(F)}
$$

- Example.
- $\operatorname{Pr}(\mathrm{E} \mid \mathrm{F})=\frac{\operatorname{Pr}(\mathrm{E} \cap \mathrm{F})}{\operatorname{Pr}(\mathrm{F})}=\frac{2 / 8}{5 / 8}=\frac{2}{5}$

Probability

- Independence.
- Events E and F are independent if information about E does not affect outcome of F and vice versa.

$$
\operatorname{Pr}(E \mid F)=\operatorname{Pr}(E) \quad \operatorname{Pr}(F \mid E)=\operatorname{Pr}(F)
$$

- Same as $\operatorname{Pr}(E \cap F)=\operatorname{Pr}(E) \cdot \operatorname{Pr}(F)$

Probability

- Union bound.

- What is the probability that any of event E_{1}, \ldots, E_{k} will happen, i.e., what is $\operatorname{Pr}\left(E_{1} \cup E_{2} \cup \cdots \cup E_{k}\right) ?$

- If events are disjoint, $\operatorname{Pr}\left(\mathrm{E}_{1} \cup \cdots \cup \mathrm{E}_{\mathrm{k}}\right)=\operatorname{Pr}\left(\mathrm{E}_{1}\right)+\cdots+\operatorname{Pr}\left(\mathrm{E}_{\mathrm{k}}\right)$.
- If events overlap, $\operatorname{Pr}\left(\mathrm{E}_{1} \cup \cdots \cup \mathrm{E}_{\mathrm{k}}\right)<\operatorname{Pr}\left(\mathrm{E}_{1}\right)+\cdots+\operatorname{Pr}\left(\mathrm{E}_{\mathrm{k}}\right)$.
- In both cases, the union bound holds:

$$
\operatorname{Pr}\left(E_{1} \cup \cdots \cup E_{k}\right) \leq \operatorname{Pr}\left(E_{1}\right)+\cdots+\operatorname{Pr}\left(E_{k}\right)
$$

Randomized Algorithms I

- Probability
- Contention Resolution
- Minimum Cut

Contention Resolution

- Contention resolution. Consider n processes P_{1}, \ldots, P_{n} trying to access a shared database:
- If two or more processes access database at the same time, all processes are locked out.
- Processes cannot communicate.
- Goal. Come up with a protocol to ensure all processes will access database.
- Challenge. Need symmetry breaking paradigm.

Contention Resolution

- Applications.
- Distributed communication and interference.
- Illustrates simplicity and power of randomized algorithms.

Contention Resolution

- Protocol. Each process accesses the database at time t with probability $p=1 / n$.

Contention Resolution

- Analysis. How do we analyze the protocol?

Contention Resolution

- Success for a single process in a single round.

- $S_{i, t}=$ event that P_{i} successfully accesses database at time t.

Contention Resolution

- Failure for a single process in rounds $1, \ldots, t$.
- $F_{i, t}=$ event that P_{i} fails to access database in any of rounds $1, \ldots, t$.

$$
\begin{aligned}
& \begin{array}{l}
\text { probability that } P_{i} \text { does } \\
\text { succeed in round } 1 \text { and }
\end{array}
\end{aligned}
$$

round 2 and ... and round t.
$\cdot \mathrm{t}=\lceil\mathrm{en}\rceil \Rightarrow \operatorname{Pr}\left(\mathrm{F}_{\mathrm{i}, \mathrm{t}}\right) \leq\left(1-\frac{1}{\mathrm{en}}\right)^{\lceil\mathrm{en}\rceil} \leq\left(1-\frac{1}{\mathrm{en}}\right)^{\mathrm{en}} \leq \frac{1}{\mathrm{e}}$
$\cdot \mathrm{t}=\lceil\mathrm{en}\rceil(\mathrm{c} \ln \mathrm{n}) \Rightarrow \operatorname{Pr}\left(F_{i, t}\right) \leq\left(\frac{1}{\mathrm{e}}\right)^{\mathrm{cln} n}=\frac{1}{\mathrm{n}^{c}}$
$\left(1-\frac{1}{\mathrm{n}}\right)^{\mathrm{n}}$ converges to
1/e from below.

Contention Resolution

- Failure for at least one process in rounds $1, \ldots, t$.
- $F_{t}=$ event that at least one of n processes fails to access database in any of rounds $1, \ldots, \mathrm{t}$.

$$
\begin{array}{r}
\operatorname{Pr}\left(F_{t}\right)=\operatorname{Pr}\left(\bigcup_{i=1}^{n} F_{i, t}\right) \leq \sum_{i=1}^{n} \operatorname{Pr}\left(F_{i, t}\right) \leq n\left(1-\frac{1}{\mathrm{en}}\right)^{\mathrm{t}} \\
\text { union bound } \\
\operatorname{Pr}\left(F_{i, t}\right) \leq\left(1-\frac{1}{\mathrm{en}}\right)^{\mathrm{t}}
\end{array}
$$ one of P_{1}, \ldots, P_{n} fails

in rounds $1, \ldots$,
$\cdot \mathrm{t}=\lceil\mathrm{en}\rceil 2 \ln \mathrm{n} \Rightarrow \operatorname{Pr}\left(\mathrm{F}_{\mathrm{t}}\right) \leq \mathrm{n}\left(1-\frac{1}{\mathrm{en}}\right)^{\lceil\mathrm{en}\rceil 2 \ln \mathrm{n}} \leq \mathrm{n}\left(\frac{1}{\mathrm{e}}\right)^{2 \ln \mathrm{n}}=\frac{\mathrm{n}}{\mathrm{n}^{2}}=\frac{1}{\mathrm{n}}$.

- \Rightarrow Probability that all processes successfully access the database after $\lceil e n\rceil 2 \ln n$ rounds is at least $1-1 / n$.

Contention Resolution

- Conclusion. After $\lceil\mathrm{en}\rceil 2 \ln \mathrm{n}$ rounds all processes have accessed database with probability at least $1-1 / n$.
- Success probability.
- For large n probability is very close to 1.
- More rounds will further increase probability of success.
- Simplicity.
- Very simple and effective protocol.
- Difficult to solve deterministically.

Randomized Algorithms I

- Probability
- Contention Resolution
- Minimum Cut

Minimum Cut

- Graphs. Consider undirected, connected graph $G=(\mathrm{V}, \mathrm{E})$.
- Cuts.
- A cut (A, B) is a partition of V into two non-empty disjoint sets A and B.
- The size of a cut (A, B) is the number of edges crossing the cut.
- A minimum cut is a cut of minimum size.

Minimum Cut

- Applications.
- Network fault tolerance.
- Image segmentation.
- Parallel computation
- Social network analysis.
- ...

Minimum Cut
-Which solutions do we know?
Min s-t-Cut

for all s, t with $s \neq t:)$
Find min $\left.s-t-C_{u t}\right\} \frac{n^{2} \cdot L z\left(M_{a x} F \operatorname{low}\right)}{\geq U\left(n^{3}\right)}$ Output minimum

Minimum Cut

- Contraction algorithm.
- Pick edge $\mathrm{e}=(\mathrm{u}, \mathrm{v})$ uniformly at random.
- Contract e.
- Replace e by single vertex w.
- Preserve edges, updating endpoints of u and v to w.
- Preserve parallel edges, but remove self-loops.
- Repeat until two vertices a and b left.
- Return cut (all vertices contracted into a, all vertices contracted into b).

cut is $(\{a, b, c\},\{d\})$ of size 2

Minimum Cut

- Analysis.
- Consider minimum cut (A, B) with crossing edges F.
- What is the probability that the contraction algorithm returns (A, B) ?

Minimum Cut

- Round 1.
- What is the probability that we contract an edge from F in round 1 ?
- Each vertex has deg $\geq|F|$ (otherwise smaller cut exists) $\Rightarrow \sum \operatorname{deg}(v) \geq|F| n$.

$$
\sum_{v \in V} \operatorname{deg}(v)=2 m \Rightarrow m=\frac{\sum_{v \in V} \operatorname{deg}(v)}{2} \geq \frac{|F| n}{2}
$$

- Probability we contract edge from F is $=\frac{|F|}{m} \leq \frac{|F|}{|F| n / 2}=\frac{2}{n}$.

Minimum Cut

- Round j+1.
- What is the probability that we contract an edge in round $j+1$ from F, given that no edge from F was contracted in rounds $1, \ldots, j$?
- G^{\prime} is graph after j rounds with $\mathrm{n}-\mathrm{j}$ nodes and no edges from F was contracted in rounds $1, \ldots, j$.
- Every cut in G^{\prime} is a cut in $G \Rightarrow$ at least $|F|$ edges incident to every node in G^{\prime}
$\cdot \Rightarrow G^{\prime}$ contains at least $\frac{|F|(n-j)}{2}$ edges \Rightarrow probability is $\leq \frac{|F|}{m}=\frac{2}{n-j}$.

Minimum Cut

- Success after all rounds.
- $E_{j}=$ event that an edge from F is not contracted in round j.
- The probability that we return the correct minimum cut is $\operatorname{Pr}\left(E_{n-2} \cap \cdots \cap E_{1}\right)$.
- We know:
- $\operatorname{Pr}\left(E_{1}\right) \geq 1-\frac{2}{\mathrm{n}}$.
- $\operatorname{Pr}\left(E_{j+1} \mid E_{1} \cap \cdots \cap E_{j}\right) \geq 1-\frac{2}{n-j}$.
- Conditional probability definition + algebra $\Rightarrow \operatorname{Pr}\left(E_{1} \cap \cdots \cap E_{\substack{ \\\boldsymbol{m}-2}}\right) \geq \frac{2}{n^{2}}$.

Minimum Cut

- Conclusion.
- We return the correct minimum cut with probability $\geq 2 / n^{2}$ in polynomial time.
- Probability amplification.
- Correct solution only with very small probability
- Run contraction algorithm many times and return smallest cut.
- With $n^{2} \ln n$ runs with independent random choices the probability of failure to find minimum cut is $\leq\left(1-\frac{2}{n^{2}}\right)^{n^{2} \ln n} \leq\left(\frac{1}{e}\right)^{2 \ln n}=\frac{1}{n^{2}}$.
- Time.
- $\Theta\left(n^{2} \log n\right)$ iterations that take $\Omega(m)$ time each.
- More techniques and tricks $\Rightarrow \mathrm{m} \log { }^{(1)} \mathrm{n}$ time solution. [Karger 2000]

Minimum Cut

- Monte Carlo algorithm.
- Randomized algorithm.

$M C=$ mostly correct

- Guarantee on running time, likely to find correct answer.
- Las Vegas algorithm.
- Randomized algorithm.
- Guaranteed to find the correct answer, likely to be fast.

Randomized Algorithms I

- Probability
- Contention Resolution
- Minimum Cut

