
NP-hardness: Motivation

Erickson, Chapter 12



• Design patterns for efficient 
algorithms:


• Divide-and-Conquer


• Dynamic Programming


• Greedy Algorithms


• Maximum Flow


• etc.

This course so far
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Which problems have 
efficient algorithms?



Which problems don't have 
efficient algorithms?



Goal
Classify problems according 
to their inherent complexity 



Complexity Classification
(efficient = polynomial-time computable)
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efficient algorithms exist probably no efficient algorithms

shortest path longest path

minimum cut maximum cut

2SAT 3SAT

planar 4-colorability planar 3-colorability

minimum bipartite vertex-cover minimum vertex-cover

maximum matching maximum 3d-matching

linear programming integer linear programming

primality testing factoring (Note: Factoring is not

known to be NP-hard!)



Why do we care?

• Know when to change your goals:


• use heuristics (e.g. SAT-solvers, ILP-solvers, etc.)


• narrow down your problem


• use approximation algorithms or fixed-parameter tractable algorithms 

• Explain to your employer why neither you nor anyone else can find an efficient 
algorithm
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The Circuit Satisfiability Problem

Erickson, Section 12.1



Boolean Circuits
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Logical Gates Circuit



Example
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Problem 1: Circuit satisfiability
Is there an assignment so that the circuit outputs 1?
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Problem 2: Verification of circuit satisfiability
Verify that the circuit outputs 1 on the given assignment.
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Logical Gates Circuit
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This is a satisfying assignment of the circuit.



Circuit satisfiability vs verification

• Definition. Circuit C is satisfiable if it has a satisfying assignment.


• Problem 1: Given circuit C, decide whether C is satisfiable.


• Problem 2: Given circuit C and assignment x, decide whether x satisfies C.


• Exercise: Do you think Problem 1 is polynomial-time computable? Do you 
think Problem 2 polynomial-time computable? Why / Why not?
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P versus NP

Erickson, Section 12.2



Decision problems

• Definition. 

• finite alphabet , typically 


• decision problem  (also called "language")


• Example. 

• CircuitSAT = { Circuit C | C is satisfiable } 
 
 
Exercise. How do you encode a circuit C as a string in ?

Σ Σ = {0,1}

L ⊆ Σ*

Σ*
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Algorithm for decision problem

• An algorithm  solves  if, for all possible input strings , we have:


• if , then 


• if , then  

• Example. An algorithm A solves CircuitSAT if, given any circuit C as input,


• if C is satisfiable, then A(C)=1


• if C is not satisfiable, then A(C)=0

A L x ∈ Σ*

x ∈ L A(x) = 1

x ∉ L A(x) = 0
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Verifier for decision problem

• A verifier  for  is an algorithm that is given  as input, such that


• if , then there exists some  such that 


• if , then, for all , we have 


• Exercise. Write the pseudocode of a polynomial-time verifier V(C, y) for 
CircuitSAT, that is, an algorithm V that is given a circuit C and an assignment y 
for C as input.

V L x ∈ Σ*

x ∈ L y ∈ Σ* V(x, y) = 1

x ∉ L y ∈ Σ* V(x, y) = 0
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P versus NP

• P = 


• NP = 


• Exercise. Prove that CircuitSAT is contained in NP 

• Open research problem. Prove that CircuitSAT is not contained in P

{L ⊆ Σ* ∣ L has a polynomial-time algorithm}
{L ⊆ Σ* ∣ L has a polynomial-time verifier}
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P ≠ NP?



NP-hardness, NP-completeness

Erickson, Section 12.3, 12.4



Definition of NP-hardness/NP-completeness
Erickson, Section 12.3

Let L ⊆ Σ* be any decision problem.


• The problem L is NP-hard if, for every L' ∈ NP, there is a polynomial-time 
reduction from L' to L.


• The problem L is NP-complete if L is NP-hard and L ∈ NP
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d

P
NP coNP



Polynomial-time reduction from L' to L
Erickson, Section 12.4

Suppose we have a magical algorithm A that solves L.


Then a polynomial-time reduction from L' to L is an algorithm A' that


• takes an input x'∈Σ* for the problem L'


• transforms this input in polynomial time to an input x for the problem L


• executes the magical algorithm A(x)


• outputs YES or NO depending on the output of A(x).
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CircuitSAT is NP-hard

Cook-Levin Theorem

• (We do not prove this theorem here.)


• Here is an important lemma:


• Exercise. Assuming P ≠ NP, what do you now know about CircuitSAT?
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If L is NP-hard and P ≠ NP, then L ∉ P.



Reductions and SAT

Erickson, Section 12.5



Formula Satisfiability

Definition. SAT is the following 
decision problem:


• Input: Boolean formula Φ


• Question: Is Φ satisfiable?
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Exercise. 
Which of these formulas is satisfiable?



Φ1 = (x1 ∧ x2) ∨ (x3 ∧ (x4 ∨ x1))
Φ2 = (x1 ∧ x2 ∧ (x1 ∨ x2))

Is SAT NP-hard?



CircuitSAT

Reductions

• To show that SAT is NP-hard, 
we construct a polynomial-time reduction from CircuitSAT to SAT:
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polynomial-time 
reduction SATFormula ΦCircuit C

YES

NO

• Any potential algorithm for SAT yields an algorithm for CircuitSAT



Reduction from CircuitSAT to SAT

• Goal. Given a circuit C, compute a formula Φ such that C is satisfiable if and 
only if Φ is satisfiable.


• Idea. Introduce a new variable for each wire, then replace each gate with a 
formula that verifies the computation of the gate.
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Reduction from CircuitSAT to SAT
Example
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3SAT is NP-hard

Erickson, Section 12.6



3CNF formulas
Erickson, Section 12.6

• Conjunctive normal form (CNF): 

• 3CNF formulas: Every clause has width 3.
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(a ∨ b ∨ c ∨ d) ∧ (b ∨ c ∨ d) ∧ (a ∨ c ∨ d) ∧ (a ∨ b)
clause



3SAT

• 3SAT is the decision problem:


• Input. 3CNF formula Φ


• Question. Is Φ satisfiable?


• We want to show that 3SAT is NP-hard.
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Reduction from CircuitSAT to 3SAT
Overview
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CircuitSAT

polynomial-time 
reduction 3SAT

3CNF Φ
Circuit C

YES

NO



Reduction from CircuitSAT to 3SAT
Step 1: Reduce fan-in

• After this operation, all gates have at most 2 wires feeding into them.
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Reduction from CircuitSAT to 3SAT
Step 2: Transform gates to formulas to clauses

• Additionally, add the clause , indicating that the output wire of C is set to 1.(z)
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a = b

a = b ∨ c

a = b ∧ c

a

a

a

b

b

b

c

c

(a ∨ b) ∧ (a ∨ b)

(a ∨ b ∨ c) ∧ (a ∨ b) ∧ (a ∨ c)

(a ∨ b ∨ c) ∧ (a ∨ b) ∧ (a ∨ c)



Reduction from CircuitSAT to 3SAT
Step 3: Fill up clauses of smaller width to obtain a 3CNF

• After this operation, all clauses have exactly 3 literals.


• The entire reduction takes only polynomial time. 

• Result. 3SAT is NP-hard.
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(a ∨ b)

(a)

(a ∨ b ∨ z) ∧ (a ∨ b ∨ z)

(a ∨ x ∨ y) ∧ (a ∨ x ∨ y) ∧ (a ∨ x ∨ y) ∧ (a ∨ x ∨ y)



Maximum Independent Set 
is NP-hard

Erickson, Section 12.7



Maximum Independent Set Problem

• Independent Set. Set S ⊆ V(G) such that no two vertices in S are adjacent


• Maximum Independent Set Problem.


• Input. Graph G


• Output. Size |S| of a maximum independent set S.
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Reduction from 3SAT to MaxIndSet
Overview
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Reduction from 3SAT to MaxIndSet
Example
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Given Φ, construct G as follows: 
- create a triangle for each clause 
- make inconsistent literals adjacent

Exercise. Why is this reduction correct? 
Read the proof. [Erickson, Section 12.7]



Maximum Clique is NP-hard 
Minimum Vertex-Cover is NP-hard

Erickson, Section 12.9



Three related problems

Maximum 
Independent Set Maximum Clique Minimum 

Vertex-Cover



Three related problems

Maximum 
Independent Set Maximum Clique Minimum 

Vertex-Cover

Exercise. How exactly are 
these two concepts related?



Independent Set vs Clique

graph G

complement graph G

S is an independent sets of  

⟺ S contains no edges from  

⟺ S contains no non-edges from  

⟺ S is a clique of 

G

G

G

G



Three related problems

Maximum 
Independent Set Maximum Clique Minimum 

Vertex-Cover

Exercise. How exactly are 
these two concepts related?



Independent Set vs Vertex-Cover

S is an independent sets of  

⟺ S contains no edges from  

⟺ all edges of  intersect with V − S 

⟺ V − S is a vertex-cover of 

G

G

G

G



Polynomial-time Reductions
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