
NP-hardness: Motivation

Erickson, Chapter 12

• Design patterns for efficient
algorithms:

• Divide-and-Conquer

• Dynamic Programming

• Greedy Algorithms

• Maximum Flow

• etc.

This course so far

2

Which problems have
efficient algorithms?

Which problems don't have
efficient algorithms?

Goal
Classify problems according
to their inherent complexity

Complexity Classification
(efficient = polynomial-time computable)

6

efficient algorithms exist probably no efficient algorithms

shortest path longest path

minimum cut maximum cut

2SAT 3SAT

planar 4-colorability planar 3-colorability

minimum bipartite vertex-cover minimum vertex-cover

maximum matching maximum 3d-matching

linear programming integer linear programming

primality testing factoring (Note: Factoring is not

known to be NP-hard!)

Why do we care?

• Know when to change your goals:

• use heuristics (e.g. SAT-solvers, ILP-solvers, etc.)

• narrow down your problem

• use approximation algorithms or fixed-parameter tractable algorithms 

• Explain to your employer why neither you nor anyone else can find an efficient
algorithm

7

The Circuit Satisfiability Problem

Erickson, Section 12.1

Boolean Circuits

9

Logical Gates Circuit

Example

10

Logical Gates Circuit

0

0

0

0

0

0

1

0

1
0

1

1

0

Problem 1: Circuit satisfiability
Is there an assignment so that the circuit outputs 1?

11

Logical Gates Circuit

?

?

?

?

? 1

Problem 2: Verification of circuit satisfiability
Verify that the circuit outputs 1 on the given assignment.

12

Logical Gates Circuit

1

0

0

1

1 1

This is a satisfying assignment of the circuit.

Circuit satisfiability vs verification

• Definition. Circuit C is satisfiable if it has a satisfying assignment.

• Problem 1: Given circuit C, decide whether C is satisfiable.

• Problem 2: Given circuit C and assignment x, decide whether x satisfies C.

• Exercise: Do you think Problem 1 is polynomial-time computable? Do you
think Problem 2 polynomial-time computable? Why / Why not?

13

P versus NP

Erickson, Section 12.2

Decision problems

• Definition.

• finite alphabet , typically

• decision problem (also called "language")

• Example.

• CircuitSAT = { Circuit C | C is satisfiable } 

Exercise. How do you encode a circuit C as a string in ?

Σ Σ = {0,1}

L ⊆ Σ*

Σ*

15

Algorithm for decision problem

• An algorithm solves if, for all possible input strings , we have:

• if , then

• if , then  

• Example. An algorithm A solves CircuitSAT if, given any circuit C as input,

• if C is satisfiable, then A(C)=1

• if C is not satisfiable, then A(C)=0

A L x ∈ Σ*

x ∈ L A(x) = 1

x ∉ L A(x) = 0

16

Verifier for decision problem

• A verifier for is an algorithm that is given as input, such that

• if , then there exists some such that

• if , then, for all , we have

• Exercise. Write the pseudocode of a polynomial-time verifier V(C, y) for
CircuitSAT, that is, an algorithm V that is given a circuit C and an assignment y
for C as input.

V L x ∈ Σ*

x ∈ L y ∈ Σ* V(x, y) = 1

x ∉ L y ∈ Σ* V(x, y) = 0

17

P versus NP

• P =

• NP =

• Exercise. Prove that CircuitSAT is contained in NP

• Open research problem. Prove that CircuitSAT is not contained in P

{L ⊆ Σ* ∣ L has a polynomial-time algorithm}
{L ⊆ Σ* ∣ L has a polynomial-time verifier}

18

P ≠ NP?

NP-hardness, NP-completeness

Erickson, Section 12.3, 12.4

Definition of NP-hardness/NP-completeness
Erickson, Section 12.3

Let L ⊆ Σ* be any decision problem.

• The problem L is NP-hard if, for every L' ∈ NP, there is a polynomial-time
reduction from L' to L.

• The problem L is NP-complete if L is NP-hard and L ∈ NP

21

d

P
NP coNP

Polynomial-time reduction from L' to L
Erickson, Section 12.4

Suppose we have a magical algorithm A that solves L.

Then a polynomial-time reduction from L' to L is an algorithm A' that

• takes an input x'∈Σ* for the problem L'

• transforms this input in polynomial time to an input x for the problem L

• executes the magical algorithm A(x)

• outputs YES or NO depending on the output of A(x).

22

CircuitSAT is NP-hard

Cook-Levin Theorem

• (We do not prove this theorem here.)

• Here is an important lemma:

• Exercise. Assuming P ≠ NP, what do you now know about CircuitSAT?

23

If L is NP-hard and P ≠ NP, then L ∉ P.

Reductions and SAT

Erickson, Section 12.5

Formula Satisfiability

Definition. SAT is the following
decision problem:

• Input: Boolean formula Φ

• Question: Is Φ satisfiable?

25

Exercise. 
Which of these formulas is satisfiable?

Φ1 = (x1 ∧ x2) ∨ (x3 ∧ (x4 ∨ x1))
Φ2 = (x1 ∧ x2 ∧ (x1 ∨ x2))

Is SAT NP-hard?

CircuitSAT

Reductions

• To show that SAT is NP-hard, 
we construct a polynomial-time reduction from CircuitSAT to SAT:

26

polynomial-time
reduction SATFormula ΦCircuit C

YES

NO

• Any potential algorithm for SAT yields an algorithm for CircuitSAT

Reduction from CircuitSAT to SAT

• Goal. Given a circuit C, compute a formula Φ such that C is satisfiable if and
only if Φ is satisfiable.

• Idea. Introduce a new variable for each wire, then replace each gate with a
formula that verifies the computation of the gate.

27

Reduction from CircuitSAT to SAT
Example

28

3SAT is NP-hard

Erickson, Section 12.6

3CNF formulas
Erickson, Section 12.6

• Conjunctive normal form (CNF):

• 3CNF formulas: Every clause has width 3.

30

(a ∨ b ∨ c ∨ d) ∧ (b ∨ c ∨ d) ∧ (a ∨ c ∨ d) ∧ (a ∨ b)
clause

3SAT

• 3SAT is the decision problem:

• Input. 3CNF formula Φ

• Question. Is Φ satisfiable?

• We want to show that 3SAT is NP-hard.

31

Reduction from CircuitSAT to 3SAT
Overview

32

CircuitSAT

polynomial-time
reduction 3SAT

3CNF Φ
Circuit C

YES

NO

Reduction from CircuitSAT to 3SAT
Step 1: Reduce fan-in

• After this operation, all gates have at most 2 wires feeding into them.

33

Reduction from CircuitSAT to 3SAT
Step 2: Transform gates to formulas to clauses

• Additionally, add the clause , indicating that the output wire of C is set to 1.(z)

34

a = b

a = b ∨ c

a = b ∧ c

a

a

a

b

b

b

c

c

(a ∨ b) ∧ (a ∨ b)

(a ∨ b ∨ c) ∧ (a ∨ b) ∧ (a ∨ c)

(a ∨ b ∨ c) ∧ (a ∨ b) ∧ (a ∨ c)

Reduction from CircuitSAT to 3SAT
Step 3: Fill up clauses of smaller width to obtain a 3CNF

• After this operation, all clauses have exactly 3 literals.

• The entire reduction takes only polynomial time.

• Result. 3SAT is NP-hard.

35

(a ∨ b)

(a)

(a ∨ b ∨ z) ∧ (a ∨ b ∨ z)

(a ∨ x ∨ y) ∧ (a ∨ x ∨ y) ∧ (a ∨ x ∨ y) ∧ (a ∨ x ∨ y)

Maximum Independent Set
is NP-hard

Erickson, Section 12.7

Maximum Independent Set Problem

• Independent Set. Set S ⊆ V(G) such that no two vertices in S are adjacent

• Maximum Independent Set Problem.

• Input. Graph G

• Output. Size |S| of a maximum independent set S.

37

Reduction from 3SAT to MaxIndSet
Overview

38

Reduction from 3SAT to MaxIndSet
Example

39

Given Φ, construct G as follows:
- create a triangle for each clause
- make inconsistent literals adjacent

Exercise. Why is this reduction correct?
Read the proof. [Erickson, Section 12.7]

Maximum Clique is NP-hard
Minimum Vertex-Cover is NP-hard

Erickson, Section 12.9

Three related problems

Maximum
Independent Set Maximum Clique Minimum

Vertex-Cover

Three related problems

Maximum
Independent Set Maximum Clique Minimum

Vertex-Cover

Exercise. How exactly are
these two concepts related?

Independent Set vs Clique

graph G

complement graph G

S is an independent sets of

⟺ S contains no edges from

⟺ S contains no non-edges from

⟺ S is a clique of

G

G

G

G

Three related problems

Maximum
Independent Set Maximum Clique Minimum

Vertex-Cover

Exercise. How exactly are
these two concepts related?

Independent Set vs Vertex-Cover

S is an independent sets of

⟺ S contains no edges from

⟺ all edges of intersect with V − S

⟺ V − S is a vertex-cover of

G

G

G

G

Polynomial-time Reductions

46

