NP-hardness: Motivation

Erickson, Chapter 12

This course so far

- Design patterns for efficient algorithms:
 - Divide-and-Conquer
 - Dynamic Programming
 - Greedy Algorithms
 - Maximum Flow
 - etc.

Which problems have efficient algorithms?

Which problems don't have efficient algorithms?

Goal Classify problems according to their inherent complexity

Complexity Classification (efficient = polynomial-time computable)

efficient algorithms exist

shortest path

minimum cut

2SAT

planar 4-colorability

minimum bipartite vertex-cove

maximum matching

linear programming

primality testing

	probably no efficient algorithms
	longest path
	maximum cut
	3SAT
	planar 3-colorability
/er	minimum vertex-cover
	maximum 3d-matching
	integer linear programming
	factoring

(Note: Factoring is not known to be NP-hard!)

Why do we care?

- Know when to change your goals:
 - use heuristics (e.g. SAT-solvers, ILP-solvers, etc.)
 - narrow down your problem
 - lacksquare
- algorithm

use approximation algorithms or fixed-parameter tractable algorithms

Explain to your employer why neither you nor anyone else can find an efficient

The Circuit Satisfiability Problem

Erickson, Section 12.1

Boolean Circuits

Logical Gates

Circuit

Example

Logical Gates

Circuit

Problem 1: Circuit satisfiability

Is there an assignment so that the circuit outputs 1?

Logical Gates

11

Circuit

Problem 2: Verification of circuit satisfiability

Verify that the circuit outputs 1 on the given assignment.

Logical Gates

This is a <u>satisfying assignment</u> of the circuit.

Circuit

Circuit satisfiability vs verification

Definition. Circuit C is <u>satisfiable</u> if it has a satisfying assignment.

- Problem 1: Given circuit C, decide whether C is satisfiable.
- Problem 2: Given circuit C and assignment x, decide whether x satisfies C.

 Exercise: Do you think Problem 1 is polynomial-time computable? Do you think Problem 2 polynomial-time computable? Why / Why not?

Pversus NP

Erickson, Section 12.2

Decision problems

- **Definition.**
 - finite alphabet Σ , typically $\Sigma = \{0,1\}$
 - decision problem $L \subseteq \Sigma^*$ (also called "language")
- **Example.**
 - CircuitSAT = { Circuit C | C is satisfiable }

Exercise. How do you encode a circuit C as a string in Σ^* ?

Algorithm for decision problem

- - if $x \in L$, then A(x) = 1
 - if $x \notin L$, then A(x) = 0
- - if C is satisfiable, then A(C)=1
 - if C is not satisfiable, then A(C)=0

• An algorithm A <u>solves</u> L if, for all possible input strings $x \in \Sigma^*$, we have:

Example. An algorithm A solves CircuitSAT if, given any circuit C as input,

Verifier for decision problem

- A <u>verifier</u> V for L is an algorithm that is given $x \in \Sigma^*$ as input, such that
 - if $x \in L$, then there exists some $y \in \Sigma^*$ such that V(x, y) = 1
 - if $x \notin L$, then, for all $y \in \Sigma^*$, we have V(x, y) = 0

• **Exercise.** Write the pseudocode of a polynomial-time verifier V(C, y) for CircuitSAT, that is, an algorithm V that is given a circuit C and an assignment y for C as input.

Pversus NP

• $\mathbf{P} = \left\{ L \subseteq \Sigma^* \mid L \text{ has a polynomial-time algorithm} \right\}$ • **NP** = $\left\{ L \subseteq \Sigma^* \mid L \text{ has a polynomial-time verifier} \right\}$

- **Exercise.** Prove that CircuitSAT is contained in NP
- Open research problem. Prove that CircuitSAT is not contained in P

Erickson, Section 12.3, 12.4

NP-hardness, NP-completeness

Definition of NP-hardness/NP-completeness Erickson, Section 12.3

Let $L \subseteq \Sigma^*$ be any decision problem.

- *reduction* from L' to L.
- The problem L is **NP-complete** if L is **NP**-hard and $L \in \mathbf{NP}$

• The problem L is **NP-hard** if, for every $L' \in NP$, there is a polynomial-time

Polynomial-time reduction from L' to L Erickson, Section 12.4

Suppose we have a magical algorithm A that solves L. Then a **polynomial-time reduction** from L' to L is an algorithm A' that

- takes an input $x' \in \Sigma^*$ for the problem L'
- transforms this input in polynomial time to an input x for the problem L
- executes the magical algorithm A(x)
- outputs YES or NO depending on the output of A(x).

Cook-Levin Theorem CircuitSAT is NP-hard

• (We do not prove this theorem here.)

• Here is an important lemma:

If L is NP-hard and $\mathbf{P} \neq \mathbf{NP}$, then $\mathbf{L} \notin \mathbf{P}$.

• **Exercise.** Assuming $P \neq NP$, what do you now know about CircuitSAT?

Reductions and SAT

Erickson, Section 12.5

Formula Satisfiability

Exercise.

Which of these formulas is satisfiable? $\Phi_1 = (x_1 \land \overline{x_2}) \lor (x_3 \land (x_4 \lor \overline{x_1}))$ $\Phi_2 = (x_1 \land \overline{x_2} \land (\overline{x_1} \lor x_2))$

Definition. SAT is the following decision problem:

- Input: Boolean formula Φ
- Question: Is Φ satisfiable?

Reductions

 To show that SAT is NP-hard, we construct a **polynomial-time reduction** from CircuitSAT to SAT:

Any potential algorithm for SAT yields an algorithm for CircuitSAT

Reduction from CircuitSAT to SAT

- Goal. Given a circuit C, compute a formula Φ such that C is satisfiable if and only if Φ is satisfiable.
- Idea. Introduce a new variable for each wire, then replace each gate with a formula that verifies the computation of the gate.

Reduction from CircuitSAT to SAT Example

 $(y_1 = x_1 \land x_4) \land (y_2 = \overline{x_4}) \land (y_3 = x_3 \land y_2) \land (y_4 = y_1 \lor x_2) \land (y_5 = \overline{x_2}) \land (y_6 = \overline{x_5}) \land (y_7 = y_3 \lor y_5) \land (z = y_4 \land y_7 \land y_6) \land z$

3SAT is NP-hard

Erickson, Section 12.6

3CNF formulas Erickson, Section 12.6

Conjunctive normal form (CNF):

clause

• 3CNF formulas: Every clause has width 3.

$(a \lor b \lor c \lor d) \land (b \lor \overline{c} \lor \overline{d}) \land (\overline{a} \lor c \lor d) \land (a \lor \overline{b})$

3SAT

- 3SAT is the decision problem:
 - Input. 3CNF formula Φ
 - **Question.** Is Φ satisfiable?

• We want to show that 3SAT is NP-hard.

Reduction from CircuitSAT to 3SAT Overview

Reduction from CircuitSAT to 3SAT Step 1: Reduce fan-in

• After this operation, all gates have at most 2 wires feeding into them.

Reduction from CircuitSAT to 3SAT Step 2: Transform gates to formulas to clauses

• Additionally, add the clause (z), indicating that the output wire of C is set to 1.

Reduction from CircuitSAT to 3SAT Step 3: Fill up clauses of smaller width to obtain a 3CNF

- After this operation, all clauses have exactly 3 literals.
- The entire reduction takes only polynomial time.
- **Result.** 3SAT is NP-hard.

$$(a \lor \overline{x} \lor y) \land (a \lor x \lor \overline{y}) \land (a \lor \overline{x} \lor \overline{y})$$

Maximum Independent Set is NP-hard

Erickson, Section 12.7

Maximum Independent Set Problem

 \bullet

- Maximum Independent Set Problem.
 - Input. Graph G
 - Output. Size |S| of a maximum independent set S.

Independent Set. Set $S \subseteq V(G)$ such that no two vertices in S are adjacent

Reduction from 3SAT to MaxIndSet Overview

Reduction from 3SAT to MaxIndSet Example

 $(a \lor b \lor c) \land (b \lor c \lor d) \land (a \lor b \lor d) \land (a \lor b \lor d)$

Given Φ , construct G as follows:

- create a triangle for each clause
- make inconsistent literals adjacent

Exercise. Why is this reduction correct? Read the proof. [Erickson, Section 12.7]

Maximum Clique is NP-hard Minimum Vertex-Cover is NP-hard

Erickson, Section 12.9

Three related problems

Maximum Independent Set

Minimum Vertex-Cover

Three related problems

Maximum Independent Set

> **Exercise.** How exactly are these two concepts related?

Minimum Vertex-Cover

Independent Set vs Clique

 ${\rm graph}\ G$

complement graph \overline{G}

S is an independent sets of G

 \Leftrightarrow S contains no edges from G

 \Leftrightarrow S contains no non-edges from \overline{G}

 \Leftrightarrow S is a clique of \overline{G}

Three related problems

Maximum Independent Set

Exercise. How exactly are these two concepts related?

Maximum Clique

Minimum Vertex-Cover

Independent Set vs Vertex-Cover

 \Leftrightarrow S contains no edges from G

 \Leftrightarrow all edges of G intersect with V – S

 \Leftrightarrow V – S is a **vertex-cover** of G

S is an **independent sets** of G

Polynomial-time Reductions

