NP-hardness: Motivation

Erickson, Chapter 12

This course so far

- Design patterns for efficient algorithms:
- Divide-and-Conquer
- Dynamic Programming
- Greedy Algorithms
- Maximum Flow
- etc.

Which problems have efficient algorithms?

Which problems don't have efficient algorithms?

Goal

Classify problems according to their inherent complexity

Complexity Classification

(efficient = polynomial-time computable)

efficient algorithms exist	probably no efficient algorithms
shortest path	longest path
minimum cut	maximum cut
2SAT	3SAT
planar 4-colorability	planar 3-colorability
minimum bipartite vertex-cover	minimum vertex-cover
maximum matching	maximum 3d-matching
linear programming	integer linear programming
primality testing	factoring

Why do we care?

- Know when to change your goals:
- use heuristics (e.g. SAT-solvers, ILP-solvers, etc.)
- narrow down your problem
- use approximation algorithms or fixed-parameter tractable algorithms
- Explain to your employer why neither you nor anyone else can find an efficient algorithm

The Circuit Satisfiability Problem

Erickson, Section 12.1

Boolean Circuits

Logical Gates

Circuit

Example

Logical Gates

Circuit

Problem 1: Circuit satisfiability

Is there an assignment so that the circuit outputs 1?

Logical Gates

Circuit

Problem 2: Verification of circuit satisfiability

Verify that the circuit outputs 1 on the given assignment.

Logical Gates

Circuit

This is a satisfying assignment of the circuit.

Circuit satisfiability vs verification

- Definition. Circuit C is satisfiable if it has a satisfying assignment.
- Problem 1: Given circuit C , decide whether C is satisfiable.
- Problem 2: Given circuit C and assignment x, decide whether x satisfies C.
- Exercise: Do you think Problem 1 is polynomial-time computable? Do you think Problem 2 polynomial-time computable? Why / Why not?

P versus NP

Erickson, Section 12.2

Decision problems

- Definition.
- finite alphabet Σ, typically $\Sigma=\{0,1\}$
- decision problem $L \subseteq \Sigma^{*}$ (also called "language")
- Example.
- CircuitSAT $=\{$ Circuit $C \mid C$ is satisfiable $\}$

Exercise. How do you encode a circuit C as a string in Σ^{*} ?

Algorithm for decision problem

- An algorithm A solves L if, for all possible input strings $x \in \Sigma^{*}$, we have:
- if $x \in L$, then $A(x)=1$
- if $x \notin L$, then $A(x)=0$
- Example. An algorithm A solves CircuitSAT if, given any circuit C as input,
- if C is satisfiable, then $A(C)=1$
- if C is not satisfiable, then $A(C)=0$

Verifier for decision problem

- A verifier V for L is an algorithm that is given $x \in \Sigma^{*}$ as input, such that
- if $x \in L$, then there exists some $y \in \Sigma^{*}$ such that $V(x, y)=1$
- if $x \notin L$, then, for all $y \in \Sigma^{*}$, we have $V(x, y)=0$
- Exercise. Write the pseudocode of a polynomial-time verifier V(C, y) for CircuitSAT, that is, an algorithm V that is given a circuit C and an assignment y for C as input.

P versus NP

- $\mathbf{P}=\left\{L \subseteq \Sigma^{*} \mid L\right.$ has a polynomial-time algorithm $\}$
- $\mathbf{N P}=\left\{L \subseteq \Sigma^{*} \mid L\right.$ has a polynomial-time verifier $\}$
- Exercise. Prove that CircuitSAT is contained in NP
- Open research problem. Prove that CircuitSAT is not contained in \mathbf{P}

$\stackrel{?}{\neq N P}$

NP-hardness, NP-completeness

Erickson, Section 12.3, 12.4

Definition of NP-hardness/NP-completeness

Erickson, Section 12.3

Let $L \subseteq \Sigma^{*}$ be any decision problem.

- The problem L is NP-hard if, for every $L^{\prime} \in \mathbf{N P}$, there is a polynomial-time reduction from L' to L.
- The problem L is NP-complete if L is $\mathbf{N P}$-hard and $L \in \mathbf{N P}$

Polynomial-time reduction from L' to \mathbf{L}

Erickson, Section 12.4

Suppose we have a magical algorithm A that solves L.
Then a polynomial-time reduction from L^{\prime} to L is an algorithm A^{\prime} that

- takes an input $x^{\prime} \in \Sigma^{\star}$ for the problem L^{\prime}
- transforms this input in polynomial time to an input x for the problem L
- executes the magical algorithm $\mathrm{A}(\mathrm{x})$
- outputs YES or NO depending on the output of $\mathbb{A}(\mathrm{x})$.

Cook-Levin Theorem
 CircuitSAT is NP-hard

- (We do not prove this theorem here.)
- Here is an important lemma:

If L is $\mathbf{N P}$-hard and $\mathbf{P} \neq \mathbf{N P}$, then $L \notin \mathbf{P}$.

- Exercise. Assuming $\mathbf{P} \neq \mathbf{N P}$, what do you now know about CircuitSAT?

Reductions and SAT

Erickson, Section 12.5

Formula Satisfiability

Exercise.

Which of these formulas is satisfiable?
$\Phi_{1}=\left(x_{1} \wedge \overline{x_{2}}\right) \vee\left(x_{3} \wedge\left(x_{4} \vee \overline{x_{1}}\right)\right)$
$\Phi_{2}=\left(x_{1} \wedge \overline{x_{2}} \wedge\left(\overline{x_{1}} \vee x_{2}\right)\right)$

Definition. SAT is the following decision problem:

- Input: Boolean formula Φ
- Question: Is Φ satisfiable?

Reductions

- To show that SAT is NP-hard, we construct a polynomial-time reduction from CircuitSAT to SAT:

- Any potential algorithm for SAT yields an algorithm for CircuitSAT

Reduction from CircuitSAT to SAT

- Goal. Given a circuit C, compute a formula Φ such that C is satisfiable if and only if Φ is satisfiable.
- Idea. Introduce a new variable for each wire, then replace each gate with a formula that verifies the computation of the gate.

Reduction from CircuitSAT to SAT

Example

$$
\begin{aligned}
&\left(y_{1}=x_{1} \wedge x_{4}\right) \wedge\left(y_{2}=\overline{x_{4}}\right) \wedge\left(y_{3}=x_{3} \wedge y_{2}\right) \wedge\left(y_{4}=y_{1} \vee x_{2}\right) \wedge \\
& \quad\left(y_{5}=\overline{x_{2}}\right) \wedge\left(y_{6}=\overline{x_{5}}\right) \wedge\left(y_{7}=y_{3} \vee y_{5}\right) \wedge\left(z=y_{4} \wedge y_{7} \wedge y_{6}\right) \wedge z
\end{aligned}
$$

3SAT is NP-hard

Erickson, Section 12.6

3CNF formulas

Erickson, Section 12.6

- Conjunctive normal form (CNF):

$$
(a \vee b \vee c \vee d) \wedge(b \vee \bar{c} \vee \bar{d}) \wedge(\bar{a} \vee c \vee d) \wedge(a \vee \bar{b})
$$

clause

- 3CNF formulas: Every clause has width 3.

3SAT

- 3SAT is the decision problem:
- Input. 3CNF formula Φ
- Question. Is Φ satisfiable?
- We want to show that 3SAT is NP-hard.

Reduction from CircuitSAT to 3SAT

Overview

Reduction from CircuitSAT to 3SAT

Step 1: Reduce fan-in

- After this operation, all gates have at most 2 wires feeding into them.

Reduction from CircuitSAT to 3SAT

Step 2: Transform gates to formulas to clauses

$$
a=\bar{b}
$$

$$
(a \vee b) \wedge(\bar{a} \vee \bar{b})
$$

$$
a=b \vee c
$$

$$
(\bar{a} \vee b \vee c) \wedge(a \vee \bar{b}) \wedge(a \vee \bar{c})
$$

$$
a=b \wedge c
$$

$$
(a \vee \bar{b} \vee \bar{c}) \wedge(\bar{a} \vee b) \wedge(\bar{a} \vee c)
$$

- Additionally, add the clause (z), indicating that the output wire of C is set to 1 .

Reduction from CircuitSAT to 3SAT

Step 3: Fill up clauses of smaller width to obtain a 3CNF

$$
\begin{align*}
& (a \vee b) \\
& (a \vee b \vee z) \wedge(a \vee b \vee \bar{z}) \\
& (a) \tag{a}\\
& (a \vee x \vee y) \wedge(a \vee \bar{x} \vee y) \wedge(a \vee x \vee \bar{y}) \wedge(a \vee \bar{x} \vee \bar{y})
\end{align*}
$$

- After this operation, all clauses have exactly 3 literals.
- The entire reduction takes only polynomial time.
- Result. 3SAT is NP-hard.

Maximum Independent Set is NP-hard

Erickson, Section 12.7

Maximum Independent Set Problem

- Independent Set. Set $S \subseteq V(G)$ such that no two vertices in S are adjacent

- Maximum Independent Set Problem.
- Input. Graph G
- Output. Size |S| of a maximum independent set S .

Reduction from 3SAT to MaxIndSet

Overview

Reduction from 3SAT to MaxIndSet

Example

$(a \vee b \vee c) \wedge(b \vee \bar{c} \vee \bar{d}) \wedge(\bar{a} \vee c \vee d) \wedge(a \vee \bar{b} \vee \bar{d})$

Given Φ, construct G as follows:

- create a triangle for each clause
- make inconsistent literals adjacent

Exercise. Why is this reduction correct? Read the proof. [Erickson, Section 12.7]

Maximum Clique is NP-hard Minimum Vertex-Cover is NP-hard

Erickson, Section 12.9

Three related problems

Maximum Independent Set

Maximum Clique

Minimum
Vertex-Cover

Three related problems

Maximum Independent Set

Exercise. How exactly are these two concepts related?

Minimum
Vertex-Cover

Independent Set vs Clique

graph G

S is an independent sets of G
\Leftrightarrow S contains no edges from G
\Longleftrightarrow S contains no non-edges from \bar{G}

Three related problems

Exercise. How exactly are these two concepts related?

Independent Set vs Vertex-Cover

S is an independent sets of G
\Leftrightarrow S contains no edges from G
\leftrightharpoons all edges of G intersect with \vee - S
$\Leftrightarrow \mathrm{V}-\mathrm{S}$ is a vertex-cover of G

Polynomial-time Reductions

