NP-hardness: Motivation

Erickson, Chapter 12

This course so far

* Design patterns for efficient

algorithms:

Divide-and-Conquer
Dynamic Programming
Greedy Algorithms
Maximum Flow

etc.

WITH THE RIGHT

- TOOLS ,

o’

Which problems have
efficient algorithms?

Which problems don't have
efficient algorithms?

Goal

Classify problems according
to their inherent complexity

EASY HARD

Complexity Classification

(efficient = polynomial-time computable)

efficient algorithms exist

probably no efficient algorithms

shortest path

longest path

minimum cut

maximum cut

2SAT

3SAT

planar 4-colorability

planar 3-colorability

minimum bipartite vertex-cover

minimum vertex-cover

maximum matching

maximum 3d-matching

linear programming

iInteger linear programming

primality testing

factoring

(Note: Factoring is not
known to be NP-hard!)

Why do we care?

« Know when to change your goals:
e use heuristics (e.g. SAT-solvers, ILP-solvers, etc.)
e narrow down your problem

* use approximation algorithms or fixed-parameter tractable algorithms

* Explain to your employer why neither you nor anyone else can find an efficient
algorithm

The Circuit Satisfiability Problem

Erickson, Section 12.1

Boolean Circuits

Logical Gates

X—!>Of—lx

X
Y

=P
D

Circuit

Example

Logical Gates

X—[>Of—'x

X
Y

X

Circuit

Problem 1: Circuit satisfiabili

Is there an assignment so that the circuit outputs 1?

Logical Gates Circuit

x—[>O—ﬂx
Xj>—xvy
Y
=L)
Y

Problem 2: Verification of circuit satisfiabili

Verify that the circuit outputs 1 on the given assignment.

Logical Gates Circuit

1

x—[>07ﬂx n
;:D—xvy 1 — =t
e D S B

This Is a satisfying assignment of the circuit.

Circuit satisfiability vs verification

* Definition. Circuit C is satisfiable if it has a satisfying assignment.

 Problem 1: Given circuit C, decide whether C is satisfiable.

* Problem 2: Given circuit C and assignment x, decide whether x satisfies C.

 Exercise: Do you think Problem 1 is polynomial-time computable”? Do you
think Problem 2 polynomial-time computable? Why / Why not?

13

P versus NP

Erickson, Section 12.2

Decision problems

* Definition.
» finite alphabet 2, typically > = {0,1}

» decision problem L C 2* (also called "language")

« Example.

e CircuitSAT = { Circuit C | C is satisfiable }

Exercise. How do you encode a circuit C as a string in 22*?

15

Algorithm for decision problem

» An algorithm A solves L if, for all possible input strings x € 2*, we have:

e ifx € L,thenA(x) = 1

e ifx & L,thenA(x) =0

 Example. An algorithm A solves CircuitSAT if, given any circuit C as input,
* if C is satisfiable, then A(C)="1
e if C is not satisfiable, then A(C)=0

16

Verifier for decision problem

A verifier V for L is an algorithm that is given x € 2 as input, such that

o if x € L, then there exists some y € 2* such that V(x,y) = 1

e ifx & L, then, forally € 2*, we have V(x,y) =0

 Exercise. Write the pseudocode of a polynomial-time verifier V(C, y) for
CircuitSAT, that is, an algorithm V that is given a circuit C and an assignment y

for C as input.

17

P versus NP

o P= { C 2* | L has a polynomial-time algorithm}

L
. NP = {L C 2* | L has a polynomial-time verifier}

« Exercise. Prove that CircuitSAT is contained in NP

 Open research problem. Prove that CircuitSAT is not contained in P

18

NP-hardness, NP-completeness

Erickson, Section 12.3, 12.4

Definition of NP-hardness/NP-completeness

Erickson, Section 12.3

Let L € 2™ be any decision problem.

 The problem L is NP-hard if, for every L' € NP, there is a polynomial-time
reduction from L' to L.

 The problem L is NP-complete if L is NP-hard and L € NP

NP coNP

21

Polynomial-time reduction from L' to L

Erickson, Section 12.4

Suppose we have a magical algorithm A that solves L.
Then a polynomial-time reduction from L' to L is an algorithm A' that

o takes an input x'e2* for the problem L'

e transforms this input in polynomial time to an input x for the problem L
» executes the magical algorithm A(x)

» outputs YES or NO depending on the output of A(x).

22

Cook-Levin Theorem
CircuitSAT is NP-hard

* (We do not prove this theorem here.)

 Here Iis an important lemma:

It L 1S NP-hard and P = NP, then L ¢ P.

 Exercise. Assuming P # NP, what do you now know about CircuitSAT?

Reductions and SAT

Erickson, Section 12.5

Formula Satisfiability

Exercise. Definition. SAT is the following
Which of these formulas is satisfiable? decision problem:

D) = (X AX) V(5 A (xg V)

. * |nput: Boolean formula @
(1)2 — (xl A ‘XZ A (xl V .Xz))

e Question: Is @ satisfiable?

Is SAT NP-hard?

25

Reductions

e To show that SAT is NP-hard,
we construct a polynomial-time reduction from CircuitSAT to SAT:

CircuitSAT
Circuit C ————» polynomial-time Formula ©
reduction >

* Any potential algorithm for SAT yields an algorithm for CircuitSAT

YES

NO

26

Reduction from CircuitSAT to SAT

 Goal. Given a circuit C, compute a formula ® such that C is satisfiable if and
only if @ is satisfiable.

* |ldea. Introduce a new variable for each wire, then replace each gate with a
formula that verifies the computation of the gate.

27

Reduction from CircuitSAT to SAT

Example

S0)
4 @ 7

Y
5 » >

(V1 =X AX)A (Yo =X) A (Y3 =X3AY)A(Y4=Y1V X3) A
(Vs =X)N (Y6 =X5)AN(Y7=Y3VYs)A(E=YsANY; NYs)\2

3SAT is NP-hard

Erickson, Section 12.6

3CNF formulas

Erickson, Section 12.6

* Conjunctive normal form (CNF):

(avbvevd)Abvevd)A@Vevd A(aVb)

clause

 3CNF formulas: Every clause has width 3.

30

3SAT

o 3SAT is the decision problem:
* Input. 3SCNF formula ®

e Question. Is O satisfiable?

e \We want to show that 3SAT is NP-hard.

31

Reduction from CircuitSAT to 3SAT

Overview

CircuitSAT

YES
Circuit C ———p polynomial-time 3CNF ©
reduction ©

Reduction from CircuitSAT to 3SAT

Step 1: Reduce fan-in

= D>
= - D:D:D

» After this operation, all gates have at most 2 wires feeding into them.

Reduction from CircuitSAT to 3SAT

Step 2: Transform gates to formulas to clauses

p— >0—a a=D (aVvb)A@VDb)
) >—a a=bVc @VbVc)A@Vh)A@Ve)
?:D—a a=bAc (@aVbVEA@VDH)A@V)

« Additionally, add the clause (z), indicating that the output wire of C is set to 1.

Reduction from CircuitSAT to 3SAT

Step 3: Fill up clauses of smaller width to obtain a 3SCNF

(aV b) (aVbVz)A@VbV?)

(a) a@VxVyYA@VXIXVyY)YA@VXVy)AaViVy)

* After this operation, all clauses have exactly 3 literals.
* The entire reduction takes only polynomial time.

e Result. 3SAT is NP-hard.

35

Maximum Independent Set
IS NP-hard

Erickson, Section 12.7

Maximum Independent Set Problem

* Independent Set. Set S C V(G) such that no two vertices in S are adjacent

o o o

« Maximum Independent Set Problem.

e Input. Graph G

e Output. Size |S| of a maximum independent set S.

37

Reduction from 3SAT to MaxindSet

Overview
3SAT
MAXINDSET size of largest TRUE TRUE
independent D1
transform setin G G has an o8
o G ' fiabl
in O(n) independent | satisfiable
3CNF : graph =7 set of size k
Boolean ume
formula FALSE FALSE
e G has no ® is not

independent | satisfiable
number of clauses in ® set of size k

Reduction from 3SAT to MaxindSet

Example
(avbVvc)A(bvevd)A(@vevd)A(avbvd)

Given ©, construct G as follows:
- create a triangle for each clause
- make Inconsistent literals adjacent

Exercise. \Why is this reduction correct”?
Read the proof. [Erickson, Section 12.7]

Maximum Clique is NP-hard
Minimum Vertex-Cover is NP-hard

Erickson, Section 12.9

Three related problems

/=0

Maximum Maximum Clique Minimum
Independent Set . Vertex-Cover

Three related problems

/=0

Maximum Maximum Clique Minimum
Independent Set > X Vertex-Cover

EXxercise. How exactly are
these two concepts related”

Independent Set vs Clique

graph G
S is an independent sets of G

— S contains no edges from G
= S contains No non-edges from G

complement graph G = Sisaclique of G

Three related problems

/=0

Maximum Maximum Clique Minimum
Indeper de Set . Vertex-Cover

EXxercise. How exactly are
these two concepts related”

Independent Set vs Vertex-Cover

S is an independent sets of &

— S contains no edges from G
= all edges of G intersect with V — S

— V — S is a vertex-cover of G

Polynomial-time Reductions

MAXINDEPENDENTSET

MAXCLIQUE
complement I I
= O(VZ) size of largest | size of largest>
time cliquein G | independent
setin G
MAXINDEPENDENTSET
MINVERTEX
G COVER k n_k
graph size of smallest ,

: size of largest
vertex cover in G independent

setin G

number of vertices in G

46

