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Brewery Example1

Most  
Profitable 

Product Mix
13$ Profit 23$ Profit

Pounds Corn480 Ounces Hops 160 Pounds Malt1190

Pounds Corn 
Ounces Hops 
Pounds Malt

  5 
  4 
35

ALE

Pounds Corn 
Ounces Hops 
Pounds Malt

 15 
  4 
20

BEER
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Brewery Example1

Ale Beer Quantity

Profit 13 23

Corn 5 15 480

Hops 4 4 160

Malt 35 20 1190
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Brewery Example: Decision Variables1

Decision Variables

x1

x1

x1

x1 x2

x2

x2

x2

x1, x2

13 23

5 15

4 4

2035

Quantity

Profit

Corn 480

Hops 160

Malt 1190
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Brewery Example: Constraints1

Constraints

x1

x1

x1

x1 x2

x2

x2

x2

x1 x2

+

+

+ ≤

≤

≤

≥

480

160

1190

0

13 23

5 15

4 4

2035

,

Profit
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Brewery Example: Objective Function1

x1

x1

x1

x1 x2

x2

x2

x2

x1 x2

Objective Function +

+

+

+ ≤

≤

≤

≥

max

480

160

1190

0

13 23

5 15

4 4

2035

,
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Brewery Example: LP Formulation1

x1

x1

x1

x1 x2

x2

x2

x2

x1 x2

+

+

+

+ ≤

≤

≤

≥

max

480

160

1190

0

13 23

5 15

4 4

2035

, x
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Brewery Example: Canonical Form1

≤

(13 23)T

(x1
x2)

5 15

4 4

35 20

(x1
x2)⋅

⋅

480

160

1190

x1, x2

max

≥
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Brewery Example: LP Terminology 1

≤

≥ 0

(13 23)T

(x1
x2)

5 15

4 4

35 20

x1, x2

(x1
x2)

480

160

1190

⋅

⋅constraint matrix
A ∈ ℝ3×2

right-hand side
b ∈ ℝ3

objective vector
c ∈ ℝ2

solution vector
x ∈ ℝ2

≥0

⏟

max
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A linear program asks for a vector                that maximizes or minimizes a given 
linear function among all vectors     that satisfy a given set of  linear inequalities.

Standard Form of an LP1

max
n

∑
j=1

cj xj

n

∑
j=1

aij xj = bi 1 ≤ i ≤ m

xj ≥ 0 1 ≤ j ≤ n

max cTx

A x = b

x ≥ 0

Let                  ,              and             , then a linear program (LP) in standard form is 
given by

A ∈ ℝm×n

x ∈ ℝn
≥0

b ∈ ℝm c ∈ ℝn

x

11



Obtain standard or slack form by adding one slack variable for each inequality. 
Thus, the brewery LP in standard form is a 5-dimensional problem.

Brewery Example: Converting to Standard Form1

max 13x1 + 23x2

5x1 + 15x2 ≤ 480
4x1 + 4x2 ≤ 160

35x1 + 20x2 ≤ 1190
x1, x2 ≥ 0

≤ 480
≤ 160
≤ 1190
≥ 0

max 13x1 +

5x1 +
4x1 +

35x1 +
x1,

23x2

15x2

4x2

20x2
x2

= 480
= 160
= 1190
≥ 0

max 13x1 +

5x1 +
4x1 +

35x1 +
x1,

23x2

15x2

4x2

20x2
x2,

+ s3
s3

+ s2

s2,

+ s1

s1,

Canonical Form Standard Form
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Converting to Standard Form1

Different LP formulations can be converted into standard form: 

Less than 

 
Greater than 

 
Min 

Unrestricted

x + 2y − 3z ≤ 17 x + 2y − 3z + s = 17, s ≥ 0

x + 2y − 3z ≥ 17 x + 2y − 3z − s = 17, s ≥ 0

min x + 2y − 3z max − x − 2y + 3z

x x = x+ − x−, x+ ≥ 0, x− ≥ 0

⇒

⇒

⇒

⇒

Equality 

 
Equality 

 
Max 

Nonnegative

⇒

⇒

⇒

⇒

13



Linear Programming1

Linear Programming. Optimize a linear function subject to linear inequalities. 

Generalizes Real-world Applications

Shortest Path Problem 
Max Flow 
Assignment Problem 
Matching 
MST

Planning  
Routing  
Scheduling 
Assignment 

Ranked among most important scientific advances of the 20th century! 

14
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Brewery Example: Feasible Region2

4x1 + 4x2 ≤ 160
Hops

35x1 + 20x2 ≤ 1190
Malt

5x1 + 15x2 ≤ 480
Corn

Feasible  
Region

Beer
x2

Ale
x1
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Brewery Example: Feasible Region2

(12,28)

(26,14)

(0,0) (34,0)

4x1 + 4x2 ≤ 160
Hops

35x1 + 20x2 ≤ 1190
Malt

5x1 + 15x2 ≤ 480
Corn

(0,32)

Beer
x2

Ale
x1

Feasible  
Region
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Brewery Example: Feasible Region2

(12,28)

(26,14)

(0,32)

(0,0) (34,0)

Beer
x2

Ale
x1
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Brewery Example: Feasible Region2

(12,28)

(26,14)

(0,32)

(0,0) (34,0)

Beer
x2

Ale
x1
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Brewery Example: Feasible Region2

(12,28)

(26,14)

(0,32)

(0,0) (34,0)

Profit

13x1 + 23x2 = $1600

13x1 + 23x2 = $800

13x1 + 23x2 = $442
Beer

x2

Ale
x1

20



Brewery Example: Feasible Region2

(12,28)

(26,14)

(0,32)

(0,0) (34,0)

Observation. Regardless of the objective function coefficients, an optimal 
solution occurs at a vertex.

Vertices

Beer
x2

Ale
x1

21



Geometry: Convexity2

Convex Combination. Given the points , a convex 
combination is  where  for all  and .

a(1), a(2), … , a(k) ∈ ℝn

∑i λia(i) λi ≥ 0 i ∑i λi = 1

Convex Set. If two points  and  are in the set, then so is  for  
.

x y λx + (1 − λ)y
0 ≤ λ ≤ 1

y

x
y

x

Convex Not Convex
22



Geometry: Convexity2

Observation. The feasible region of an LP is a convex set.

Convex Set. If two points  and  are in the set, then so is  for  
.

x y λx + (1 − λ)y
0 ≤ λ ≤ 1

23



Geometry: Convexity2

Convex Hull. The set of all convex combinations of elements of a set  is called 
the convex hull of  .

S
S

Polytope. A polytope is the convex hull of a finite set of points. 

Bounded

24



Geometry: Convexity2

Vertex. A point  in a set  that cannot be written as a strict convex combination 
of two distinct points in , i.e. .

x S
S ∃d ≠ 0 : x ± d ∈ S

Theorem. If there exists an optimal solution to an LP, then there exists one that 
is a vertex.

25



Geometry: Convexity2

Vertex. A point  in a set  that cannot be written as a strict convex combination 
of two distinct points in , i.e. .

x S
S ∃d ≠ 0 : x ± d ∈ S

Theorem. If there exists an optimal solution to an LP, then there exists one that 
is a vertex.

x − d

x + d
x − d

x + d

x − d

x + d

x − d

x + d
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Geometry: Polyhedral Combinatorics2

Halfspace. A halfspace in  is a set of the form  for some 
vector  and .

ℝn {x ∈ ℝn : aTx ≤ b}
a ∈ ℝn b ∈ ℝ

Hyperplane. A hyperplane in  is a set of the form  for some 
vector  and .

ℝn {x ∈ ℝn : aTx = b}
a ∈ ℝn b ∈ ℝ

Halfspace Hyperplane

aT x ≤ b aT x = b

27



Geometry: Polyhedral Combinatorics2

Polyhedron. A polyhedron  is the intersection of finitely 
many halfspaces.

P = {x ∈ ℝn : Ax ≤ b}

Polytope. A polytope is a bounded polyhedron. 

Polyhedron Polytope

Possibly 
unbounded

Requires at least 
three constraints

28



Geometry: Polyhedral Combinatorics2

By rotating  such that the objective function points downward, any LP can be 
expressed in the following geometric form:

ℝn

Find the lowest point in a given polyhedron. 

29



Geometry: Polyhedral Combinatorics2

By rotating  such that the objective function points downward, any LP can be 
expressed in the following geometric form:

ℝn

Unbounded Infeasible

Find the lowest point in a given polyhedron. 

30



Geometry: Polyhedral Combinatorics2

Intuition Vertex. A vertex in  is uniquely specified by  linearly independent 
equations.

ℝn n

(26,14)

4x1 + 4x2 ≤ 160

35x1 + 20x2 ≤ 1190

{ 4x1 + 4x2 = 160
35x1 + 20x2 = 1190

x2

x1

31



Geometry: Polyhedral Combinatorics2

Theorem. Given ,  is a basic feasible solution 
(BFS) iff there exists a basis  such that  and 

•  is nonsingular, 

• , 

• .

P = {x ∈ ℝn : Ax = b, x ≥ 0} x ∈ P
B ⊆ {1,…, n} |B | = m

AB ∈ ℝm×m

xB = A−1
B b ≥ 0

xN = 0

32



Geometry: Polyhedral Combinatorics2

Theorem. Given ,  is a basic feasible solution 
(BFS) iff there exists a basis  such that  and 

•  is nonsingular, 

• , 

• .

P = {x ∈ ℝn : Ax = b, x ≥ 0} x ∈ P
B ⊆ {1,…, n} |B | = m

AB ∈ ℝm×m

xB = A−1
B b ≥ 0

xN = 0

Notation.  

• Let  be the set of column indices, then  
 is the submatrix of  indexed by  

B
AB A B

AB

A =
2 1 3 0
7 3 2 1
0 0 0 5

B = {1, 3, 4}

33



Geometry: Polyhedral Combinatorics2

Notation.  

• Let  be the set of column indices, then  
 is the submatrix of  indexed by  

• Let  denote the  components of   
associated with  

B
AB A B

xB m x
AB

AB

xB

A =
2 1 3 0
7 3 2 1
0 0 0 5

xT = ( 2 0 1 0 )

Theorem. Given ,  is a basic feasible solution 
(BFS) iff there exists a basis  such that  and 

•  is nonsingular, 

• , 

• .

P = {x ∈ ℝn : Ax = b, x ≥ 0} x ∈ P
B ⊆ {1,…, n} |B | = m

AB ∈ ℝm×m

xB = A−1
B b ≥ 0

xN = 0

34



Geometry: Polyhedral Combinatorics2

Notation.  

• Let  be the set of column indices, then  
 is the submatrix of  indexed by  

• Let  denote the  components of   
associated with   

• Let denote  the  components of 
 not associated with 

B
AB A B

xB m x
AB

xN n − m
x AB

AB

xN

A =
2 1 3 0
7 3 2 1
0 0 0 5

xT = ( 2 0 1 0 )

Theorem. Given ,  is a basic feasible solution 
(BFS) iff there exists a basis  such that  and 

•  is nonsingular, 

• , 

• .

P = {x ∈ ℝn : Ax = b, x ≥ 0} x ∈ P
B ⊆ {1,…, n} |B | = m

AB ∈ ℝm×m

xB = A−1
B b ≥ 0

xN = 0
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Geometry: Polyhedral Combinatorics2

A =
2 1 3 0
7 3 2 1
0 0 0 5

, x =

2
0
1
0

, b = (
7
16
0 ) , B = {1,3,4} , N = {2}

Example. 

ABxB =
2 3 0
7 2 1
0 0 5

⋅ (
2
1
0) = (

7
16
0 ) = b

Theorem. Given ,  is a basic feasible solution 
(BFS) iff there exists a basis  such that  and 

•  is nonsingular, 

• , 

• .

P = {x ∈ ℝn : Ax = b, x ≥ 0} x ∈ P
B ⊆ {1,…, n} |B | = m

AB ∈ ℝm×m

xB = A−1
B b ≥ 0

xN = 0

36



Geometry: Polyhedral Combinatorics2

Theorem.  

i) If there exists a feasible solution, there exists a basic feasible solution. 

ii) If there exists an optimal feasible solution, there exists an optimal basic 
feasible solution.

Observation. Thus, the task of solving a LP is reduced to that of searching over 
basic feasible solutions. For a problem with  variables and  constraints there 
are at most 

basic feasible solutions.

n m

(n
m) =

n!
m!(n − m)!

37



Brewery Example: Basic Feasible Solutions2

(12,28)

(26,14)

(0,32)

(0,0) (34,0)

x1 x2 s1 s2 s3

5 15 1
4 4 1

35 20 1
⋅ x =

480
160
1190

Beer
x2

Ale
x1
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Brewery Example: Basic Feasible Solutions2

(12,28)

(26,14)

(0,32)

(0,0) (34,0)

x1 x2 s1 s2 s3

5 15 1
4 4 1

35 20 1
⋅ x =

480
160
1190

⇒

x1 = 0
x2 = 0

{s1, s2, s3}

Beer
x2

Ale
x1
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Brewery Example: Basic Feasible Solutions2

(12,28)

(26,14)

(0,32)

(0,0) (34,0)

x1 x2 s1 s2 s3

5 15 1
4 4 1

35 20 1
⋅ x =

480
160
1190

{s1, s2, s3} {x1, s1, s2}

⇒

x1 = 34
x2 = 0

Beer
x2

Ale
x1

40



Brewery Example: Basic Feasible Solutions2

(12,28)

(26,14)

(0,32)

(0,0) (34,0)

x1 x2 s1 s2 s3

5 15 1
4 4 1

35 20 1
⋅ x =

480
160
1190

⇒

x1 = 0
x2 = 32

{s1, s2, s3} {x1, s1, s2}

{x2, s2, s3}

Beer
x2

Ale
x1

41



Brewery Example: Basic Feasible Solutions2

(12,28)

(26,14)

(0,32)

(0,0) (34,0)

x1 x2 s1 s2 s3

5 15 1
4 4 1

35 20 1
⋅ x =

480
160
1190

⇒

{s1, s2, s3} {x1, s1, s2}

{x2, s2, s3}

x1 = 26
x2 = 14

{x1, x2, s1}

Beer
x2

Ale
x1

42



Brewery Example: Basic Feasible Solutions2

(19.41,25.53)
{x1, x2, s2}

Infeasible

(12,28)

(26,14)

(0,32)

(0,0) (34,0)

x1 x2 s1 s2 s3

5 15 1
4 4 1

35 20 1
⋅ x =

480
160
1190

⇒

{s1, s2, s3} {x1, s1, s2}

{x2, s2, s3}

x1 = 19.41
x2 = 25.53

{x1, x2, s1}

Beer
x2

Ale
x1
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Brewery Example: Basic Feasible Solutions2

(19.41,25.53)
{x1, x2, s2}

Infeasible

(12,28)

(26,14)

(0,32)

(0,0) (34,0)

x1 x2 s1 s2 s3

5 15 1
4 4 1

35 20 1
⋅ x =

480
160
1190

⇒

{s1, s2, s3} {x1, s1, s2}

{x2, s2, s3}

x1 = 12
x2 = 28

{x1, x2, s1}

{x1, x2, s3}
Beer

x2

Ale
x1
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LP Algorithms3

LP Algorithms. 

• Simplex Method. Search over basic feasible solutions. 

• Ellipsoid Algorithm. Use geometric divide-and-conquer.

Goal. Given  and , solve .A ∈ ℝm×n, b ∈ ℝm c ∈ ℝn max{cTx : Ax ≤ b, x ∈ ℝn}

46



Simplex Method: Intuition3

Input. Set of halfspaces    
Output. Lowest vertex in the intersection of halfspaces in  

H
H

Intuition. Follow a falling marble along the sides of the polyhedron.

47



Simplex Method: Intuition3

Intuition. Follow a falling marble along the sides of the polyhedron.

Input. Set of halfspaces    
Output. Lowest vertex in the intersection of halfspaces in  

H
H
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Simplex Method: Intuition3

Intuition. Follow a falling marble along the sides of the polyhedron.

Input. Set of halfspaces    
Output. Lowest vertex in the intersection of halfspaces in  

H
H

49



Simplex Method: Intuition3

Intuition. Follow a falling marble along the sides of the polyhedron.

Input. Set of halfspaces    
Output. Lowest vertex in the intersection of halfspaces in  

H
H

50



Simplex Method: Terminology3

Neighbors. Two bases are neighbors if they have  constraints in common.n − 1

Locally Optimal Basis. A basis is locally optimal if its location  is the optimal 
solution to the LP with the same objective function and only the constraints in 
the basis.

x

Basis. A basis is a subset of  linearly independent constraints and its location is 
the unique point  satisfying the all  constraints with equality.

n
x n
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Simplex Method: Terminology3

Neighbors. Two bases are neighbors if they have  constraints in common.n − 1

Locally Optimal Basis. A basis is locally optimal if its location  is the optimal 
solution to the LP with the same objective function and only the constraints in 
the basis.

x

Basis. A basis is a subset of  linearly independent constraints and its location is 
the unique point  satisfying the all  constraints with equality.

n
x n

Not locally  
optimal!
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Simplex Method: Terminology3

Neighbors. Two bases are neighbors if they have  constraints in common.n − 1

Locally Optimal Basis. A basis is locally optimal if its location  is the optimal 
solution to the LP with the same objective function and only the constraints in 
the basis.

x

Basis. A basis is a subset of  linearly independent constraints and its location is 
the unique point  satisfying the all  constraints with equality.

n
x n

Locally  
optimal!
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Simplex Method: Terminology3

Neighbors. Two bases are neighbors if they have  constraints in common.n − 1

Locally Optimal Basis. A basis is locally optimal if its location  is the optimal 
solution to the LP with the same objective function and only the constraints in 
the basis.

x

Basis. A basis is a subset of  linearly independent constraints and its location is 
the unique point  satisfying the all  constraints with equality.

n
x n
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Simplex Method3

Simplex Algorithm .  
if   
     return INFEASIBLE 

any feasible vertex 

while  is not locally optimal: 
     pivot downward, maintaining feasibility  

     if every feasible neighbor of  is higher than  

          return UNBOUNDED 
     else 

          any feasible neighbor of that is lower than  

return 

(H)
∩ H = ∅

x ←

x
⟨⟨ ⟩⟩

x x

x ← x
x
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Simplex Method3

Simplex Algorithm .  
if   
     return INFEASIBLE 

any feasible vertex 

while  is not locally optimal: 
     pivot downward, maintaining feasibility  

     if every feasible neighbor of  is higher than  

          return UNBOUNDED 
     else 

          any feasible neighbor of that is lower than  

return 

(H)
∩ H = ∅

x ←

x
⟨⟨ ⟩⟩

x x

x ← x
x

⏟
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Simplex Method3

Simplex Algorithm .  
if   
     return INFEASIBLE 

any feasible vertex 

while  is not locally optimal: 
     pivot downward, maintaining feasibility  

     if every feasible neighbor of  is higher than  

          return UNBOUNDED 
     else 

          any feasible neighbor of that is lower than  

return 

(H)
∩ H = ∅

x ←

x
⟨⟨ ⟩⟩

x x

x ← x
x

⏟
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Simplex Method3

Simplex Algorithm .  
if   
     return INFEASIBLE 

any feasible vertex 

while  is not locally optimal: 
     pivot downward, maintaining feasibility  

     if every feasible neighbor of  is higher than  

          return UNBOUNDED 
     else 

          any feasible neighbor of that is lower than  

return 

(H)
∩ H = ∅

x ←

x
⟨⟨ ⟩⟩

x x

x ← x
x

⏟
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Simplex Method3

Simplex Algorithm .  
if   
     return INFEASIBLE 

any feasible vertex 

while  is not locally optimal: 
     pivot downward, maintaining feasibility  

     if every feasible neighbor of  is higher than  

          return UNBOUNDED 
     else 

          any feasible neighbor of that is lower than  

return 

(H)
∩ H = ∅

x ←

x
⟨⟨ ⟩⟩

x x

x ← x
x

⏟
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Simplex Method: Find Initial Solution3

Observations.  

1) The feasibility of a vertex does not depend on choice of objective vector. 

2) Every basis is locally optimal for some objective vector.

Choose any basis .x Rotate objective to make  feasible 
and pivot “up” to a feasible basis.

x

60



Ellipsoid Algorithm3

P

How to find a point in .P

61



Ellipsoid Algorithm3

P

How to find a point in . 

• Maintain an ellipsoid  containing 

P
E P

E

62



Ellipsoid Algorithm3

P

How to find a point in . 

• Maintain an ellipsoid  containing  

• If the center  of ellipsoid is in , stop;  

P
E P

z P

z
E
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Ellipsoid Algorithm3

P

How to find a point in . 

• Maintain an ellipsoid  containing  

• If the center  of ellipsoid is in , stop;  
Otherwise find hyperplane separating  from 

P
E P

z P
z P

z
E

separating 
hyperplane
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Ellipsoid Algorithm3

P

How to find a point in . 

• Maintain an ellipsoid  containing  

• If the center  of ellipsoid is in , stop;  
Otherwise find hyperplane separating  from 

P
E P

z P
z P

z
E

separating 
hyperplane

H
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Ellipsoid Algorithm3

H

P

E′ 

E
z

separating 
hyperplane

How to find a point in . 

• Maintain an ellipsoid  containing  

• If the center  of ellipsoid is in , stop;  
Otherwise find hyperplane separating  from  

• Find the smallest ellipsoid  containing the half-ellipsoid 

P
E P

z P
z P

E′ 

66



Ellipsoid Algorithm3

P

E′ 

How to find a point in . 

• Maintain an ellipsoid  containing  

• If the center  of ellipsoid is in , stop;  
Otherwise find hyperplane separating  from  

• Find the smallest ellipsoid  containing the half-ellipsoid 

• Repeat with same procedure with !

P
E P

z P
z P

E′ 

E′ 

67



Ellipsoid Algorithm3

P Ek

Ellipsoid Algorithm.  
Set  and let  be an ellipsoid containing . 

 

     

     

k = 0 E0 P

68



Ellipsoid Algorithm3

P Ek

zk

Ellipsoid Algorithm.  
Set  and let  be an ellipsoid containing . 

While center  of ellipsoid  is not in : 

     

     

k = 0 E0 P

zk Ek P
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Ellipsoid Algorithm3

P

ax ≤ b

Ek

zk

Ellipsoid Algorithm.  
Set  and let  be an ellipsoid containing . 

While center  of ellipsoid  is not in : 

     Find a constraint  that is violated by . 

     

k = 0 E0 P

zk Ek P
ax ≤ b zk

70



Ellipsoid Algorithm3

ax ≤ azk

P

ax ≤ b

Ek

zk

Ellipsoid Algorithm.  
Set  and let  be an ellipsoid containing . 

While center  of ellipsoid  is not in : 

     Find a constraint  that is violated by . 

     

k = 0 E0 P

zk Ek P
ax ≤ b zk

71



Ellipsoid Algorithm3

ax ≤ azk

P

ax ≤ b

Ek+1

Ek

zk

Ellipsoid Algorithm.  
Set  and let  be an ellipsoid containing . 

While center  of ellipsoid  is not in : 

     Find a constraint  that is violated by . 

     Let  be minimum volume ellipsoid containing . 

k = 0 E0 P

zk Ek P
ax ≤ b zk

Ek+1 Ek ∩ {x : ax ≤ azk}
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Ellipsoid Algorithm3

ax ≤ azk

P

Ellipsoid Algorithm.  
Set  and let  be an ellipsoid containing . 

While center  of ellipsoid  is not in : 

     Find a constraint  that is violated by . 

     Let  be minimum volume ellipsoid containing . 

     Set .

k = 0 E0 P

zk Ek P
ax ≤ b zk

Ek+1 Ek ∩ {x : ax ≤ azk}
k = k + 1

ax ≤ b

half-ellipsoid
1
2

Ek

Ek+1

Ek

zk
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