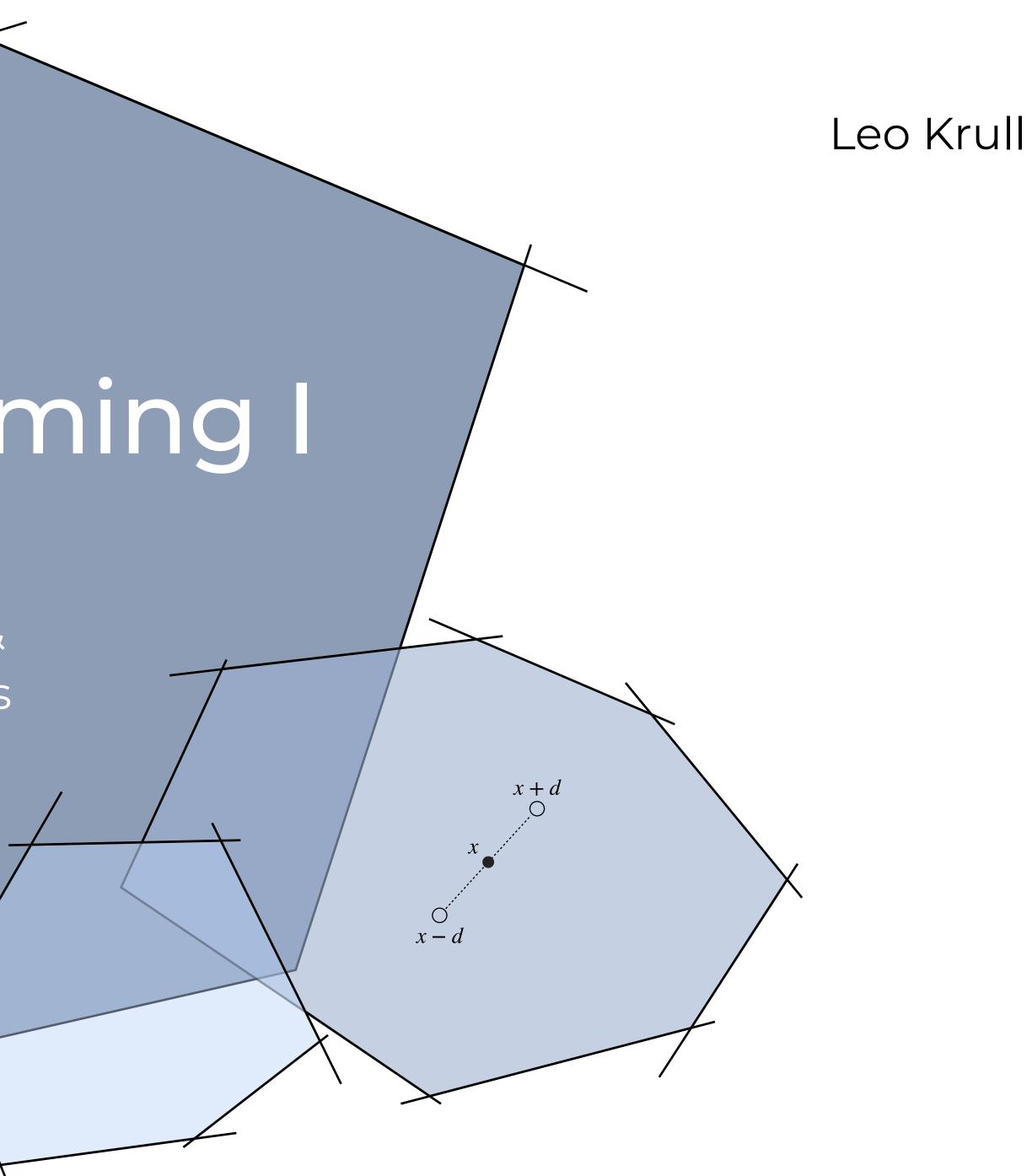
Linear Programming I LP Definition

Feasible Region & Optimal Solutions

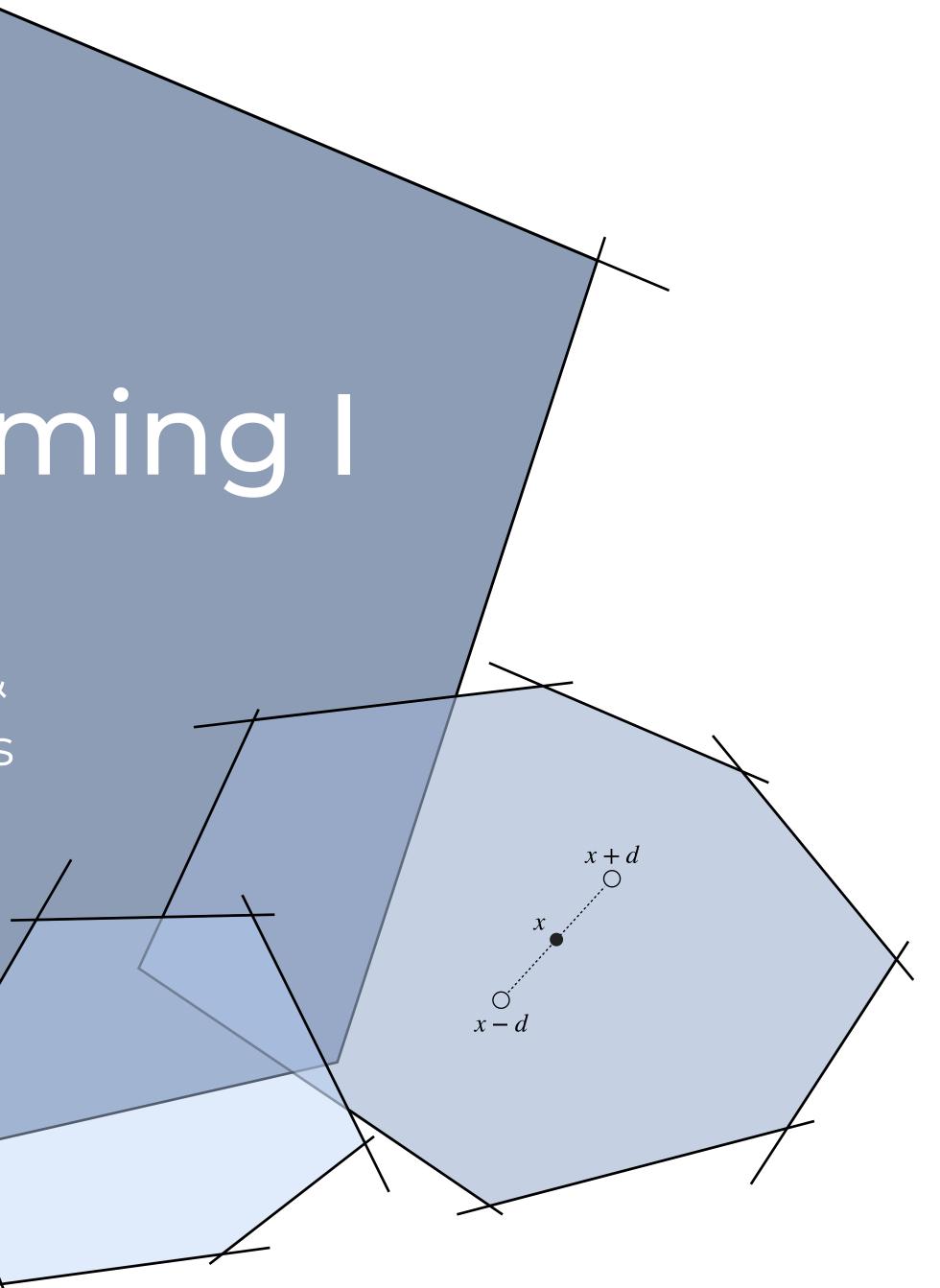
LP Algorithms

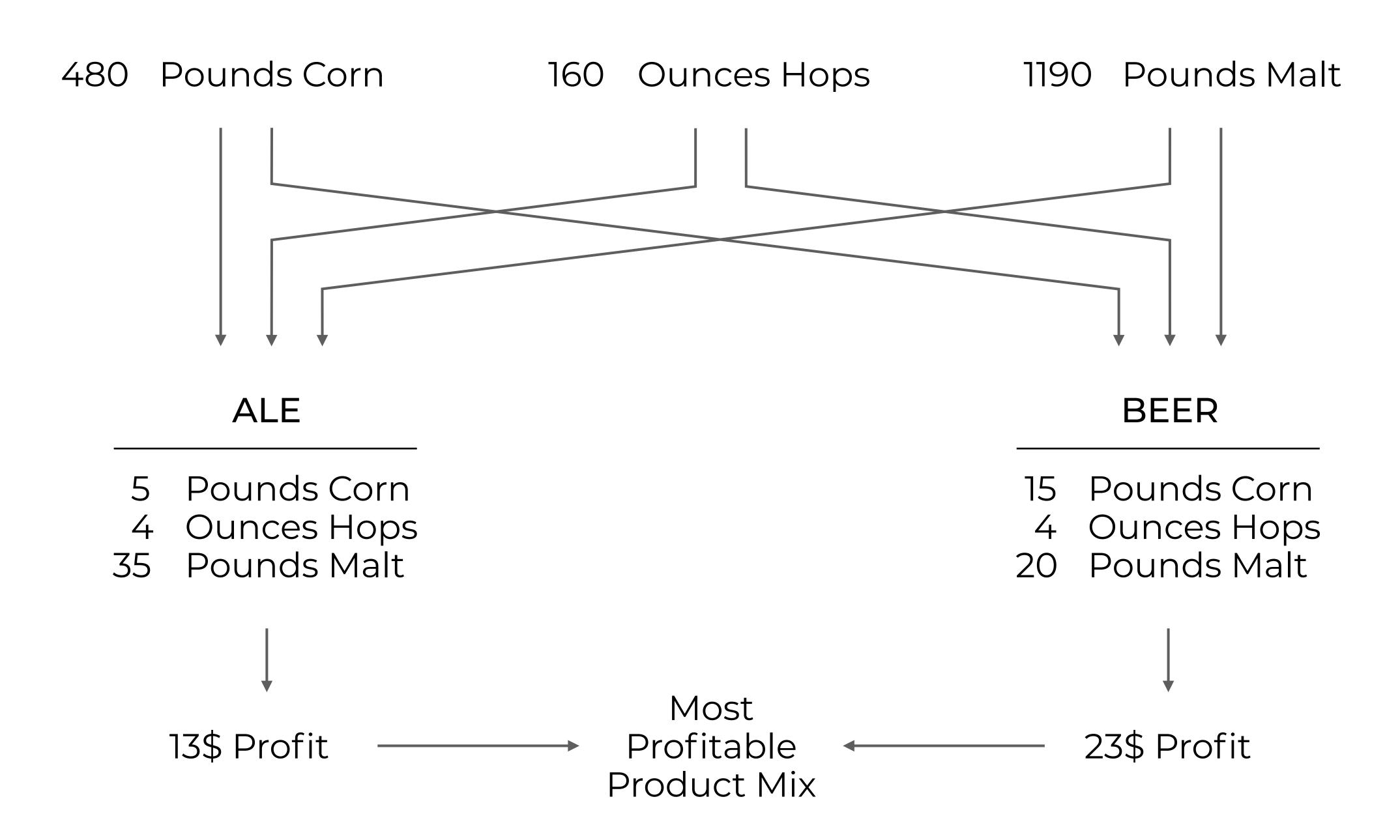


Linear Programming I LP Definition

Feasible Region & Optimal Solutions

LP Algorithms





Ale

Profit	13
--------	----

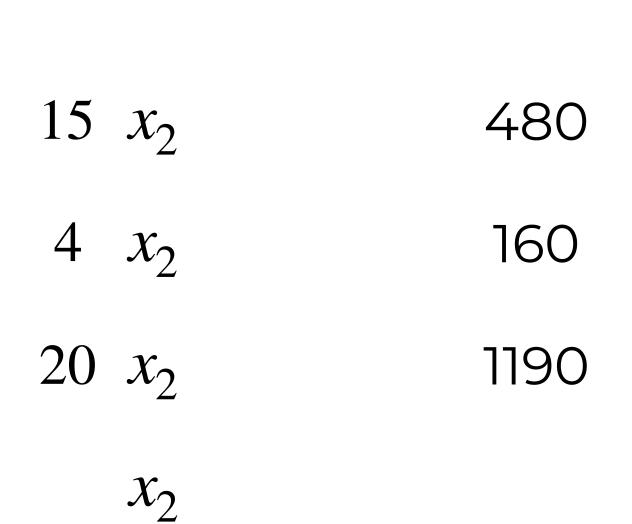
Corn	5
Hops	4
Malt	35

Decision Variables

- Profit 13 x_1
- 5 x_1 Corn
- 4 x_1 Hops
- 35 x_1 Malt

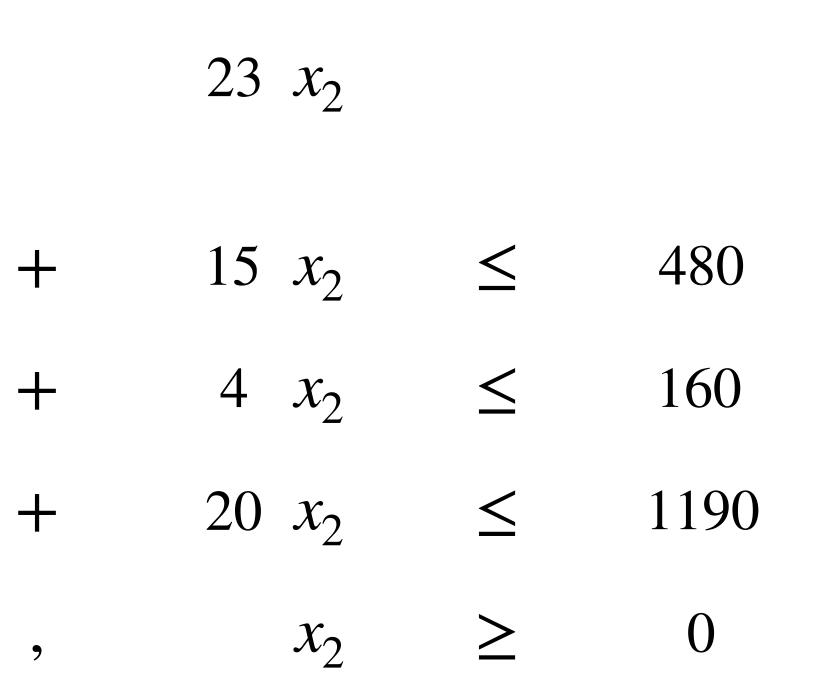
 x_1 ,

23 x_2



+

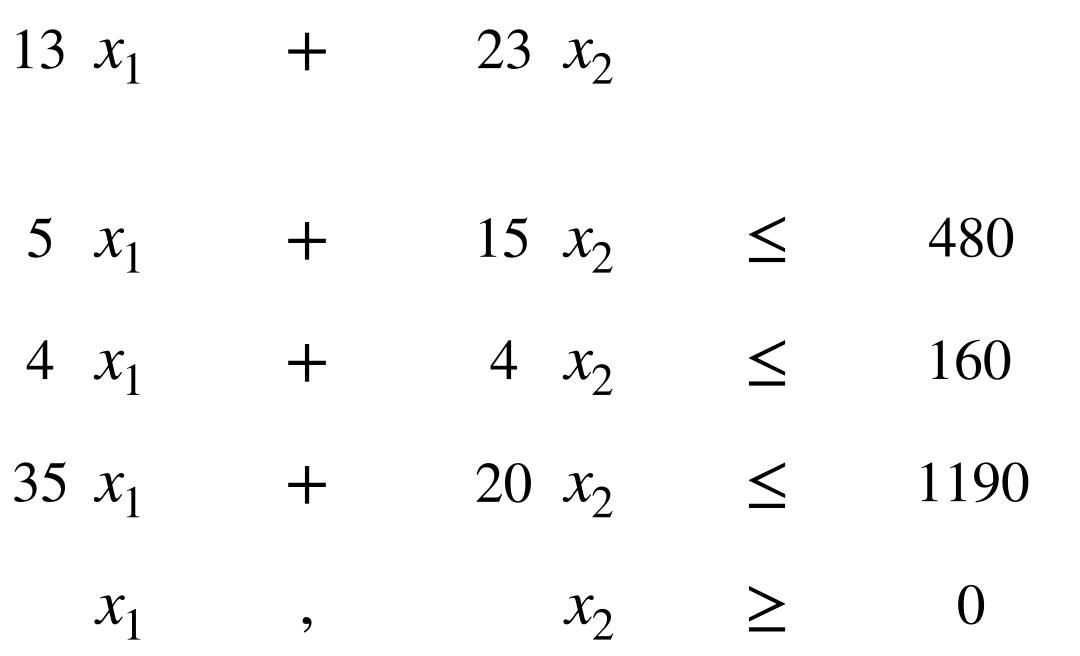
,



Objective Function max 13 x_1 + 23 x_2

 x_1

•

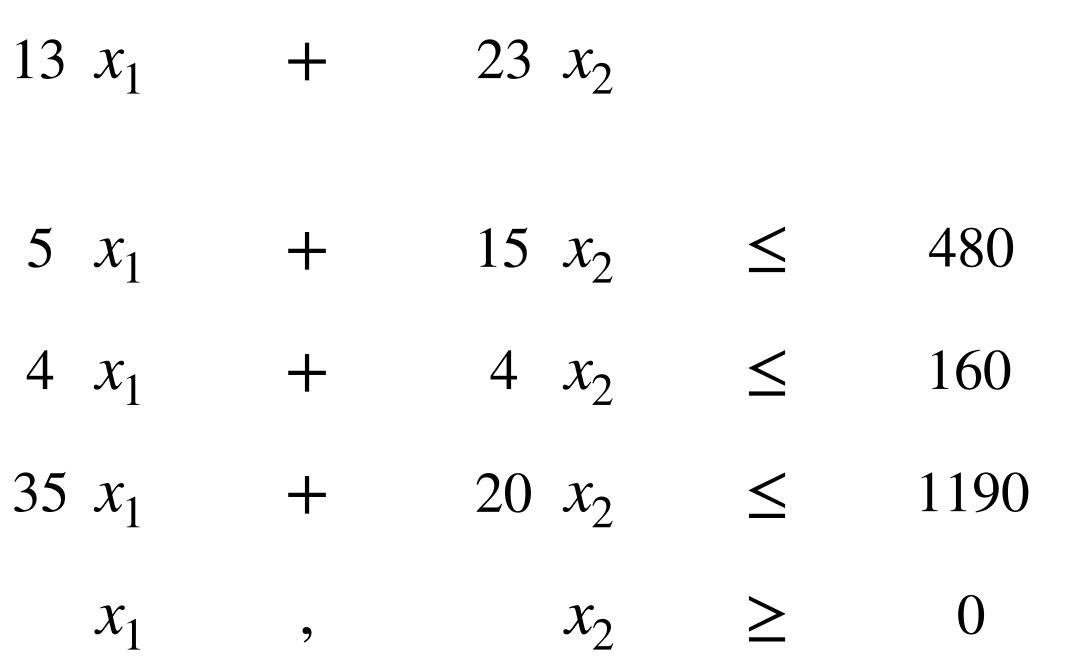


7

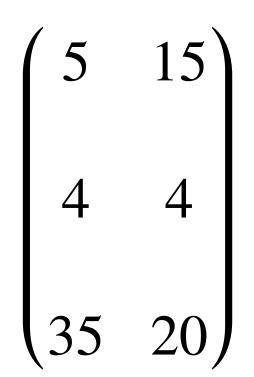
max 13 x_1 + 23 x_2

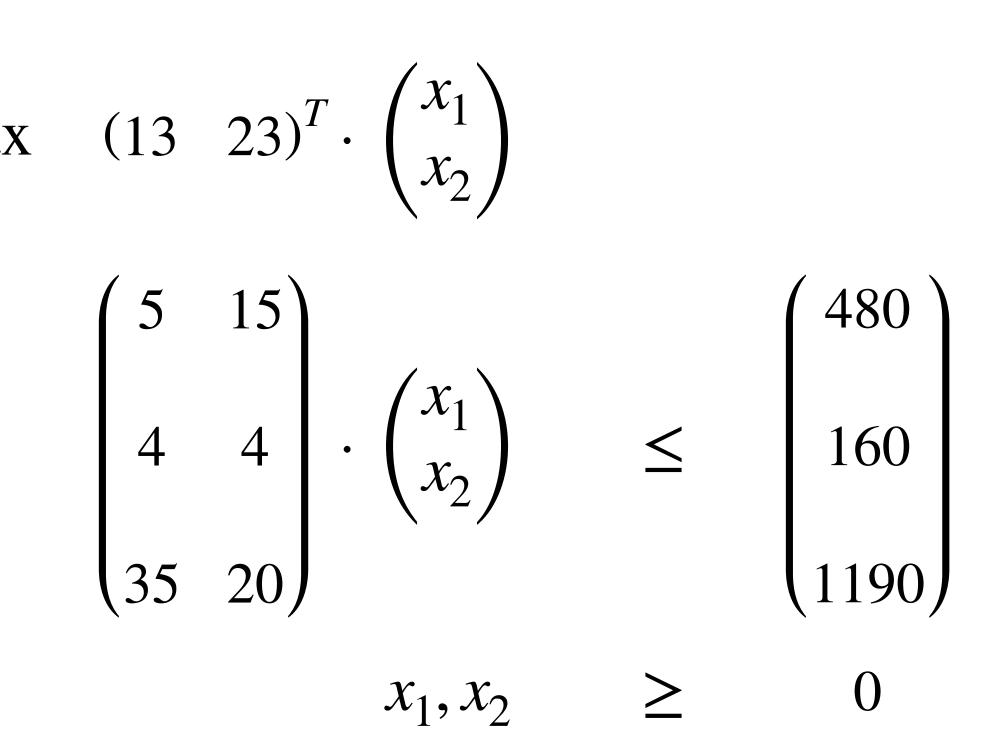
 x_1

,



max $(13 \ 23)^T \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$



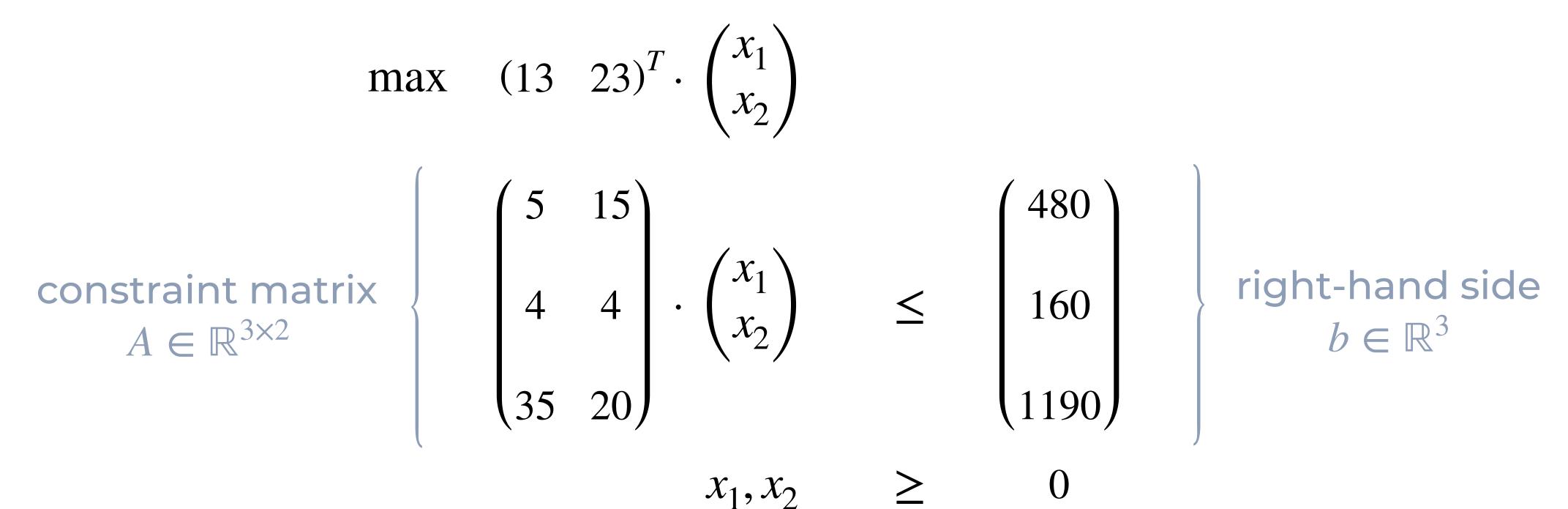


Brewery Example: LP Terminology

objective vector $c \in \mathbb{R}^2$

max $(13 \ 23)^T \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$

solution vector $x \in \mathbb{R}^2_{>0}$



Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ and $c \in \mathbb{R}^n$, then a linear program (LP) in standard form is given by

 $\max c^T x$

A x = b

 $x \ge 0$

A linear program asks for a vector $x \in \mathbb{R}^n_{\geq 0}$ that maximizes or minimizes a given linear function among all vectors x that satisfy a given set of linear inequalities.

$$\max \sum_{j=1}^{n} c_j x_j$$

$$\sum_{j=1}^{n} a_{ij} x_j = b_i \qquad 1 \le i \le m$$

$$x_j \ge 0 \qquad 1 \le j \le n$$

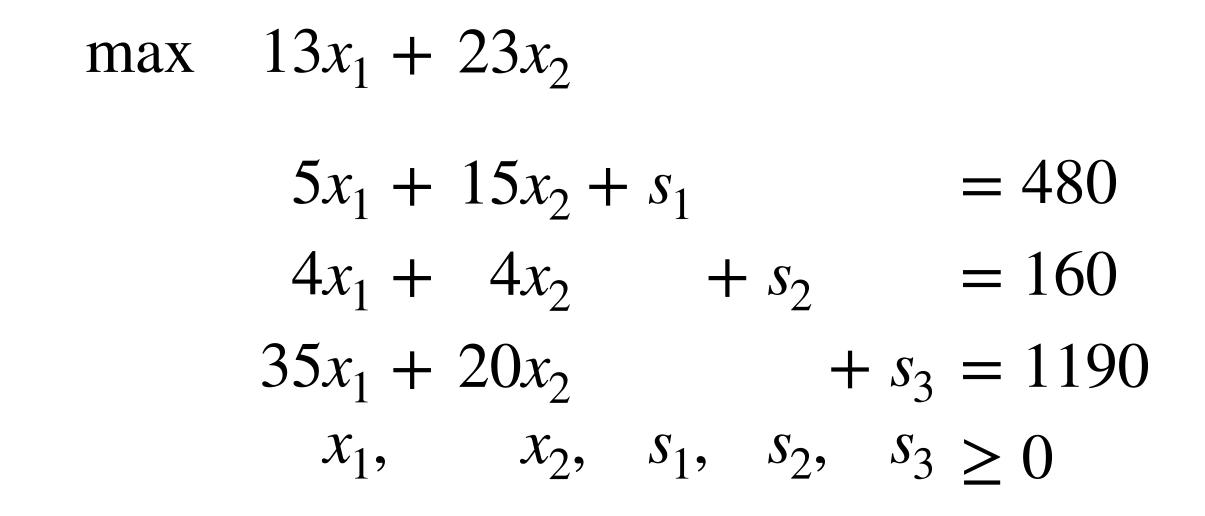
11

Canonical Form

 $13x_1 + 23x_2$ max $5x_1 + 15x_2 \le 480$ $4x_1 + 4x_2 \le 160$ $35x_1 + 20x_2 \le 1190$ $x_1, \quad x_2 > 0$

Obtain standard or slack form by adding one slack variable for each inequality. Thus, the brewery LP in standard form is a 5-dimensional problem.

Standard Form



Different LP formulations can be converted into standard form:

 \Rightarrow Equality Less than

Greater than \Rightarrow Equality

Min \Rightarrow Max

Unrestricted \Rightarrow Nonnegative

 $x + 2y - 3z \le 17 \quad \Rightarrow \quad x + 2y - 3z + s = 17, \ s \ge 0$ $x + 2y - 3z \ge 17 \implies x + 2y - 3z - s = 17, s \ge 0$ $\min x + 2y - 3z \implies \max -x - 2y + 3z$ $\Rightarrow x = x^+ - x^-, x^+ \ge 0, x^- \ge 0$ ${\mathcal X}$

Linear Programming. Optimize a linear function subject to linear inequalities.

Generalizes

Shortest Path Problem Max Flow Assignment Problem Matching MST

Ranked among most important scientific advances of the 20th century!

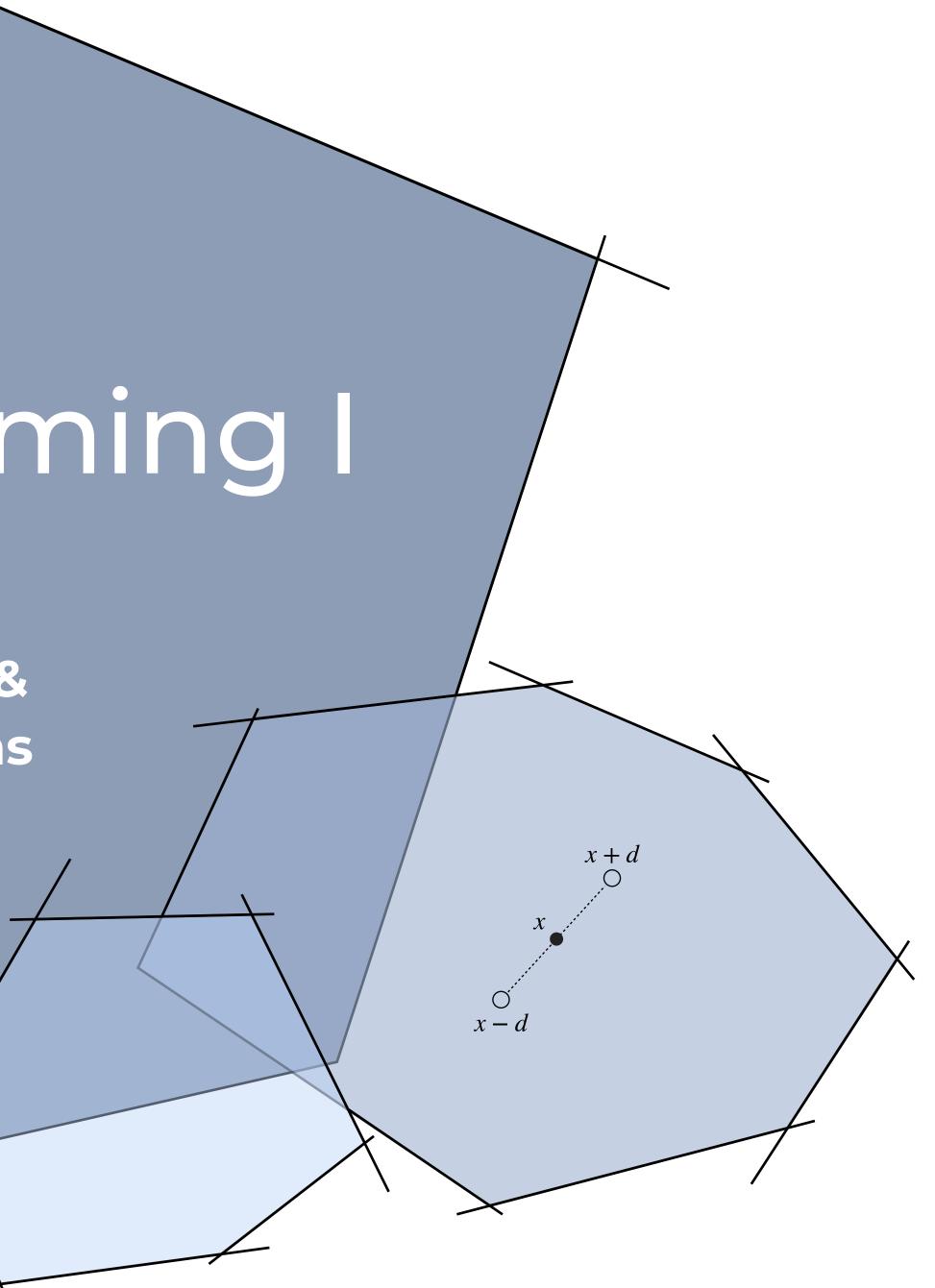
Real-world Applications

Planning Routing Scheduling Assignment

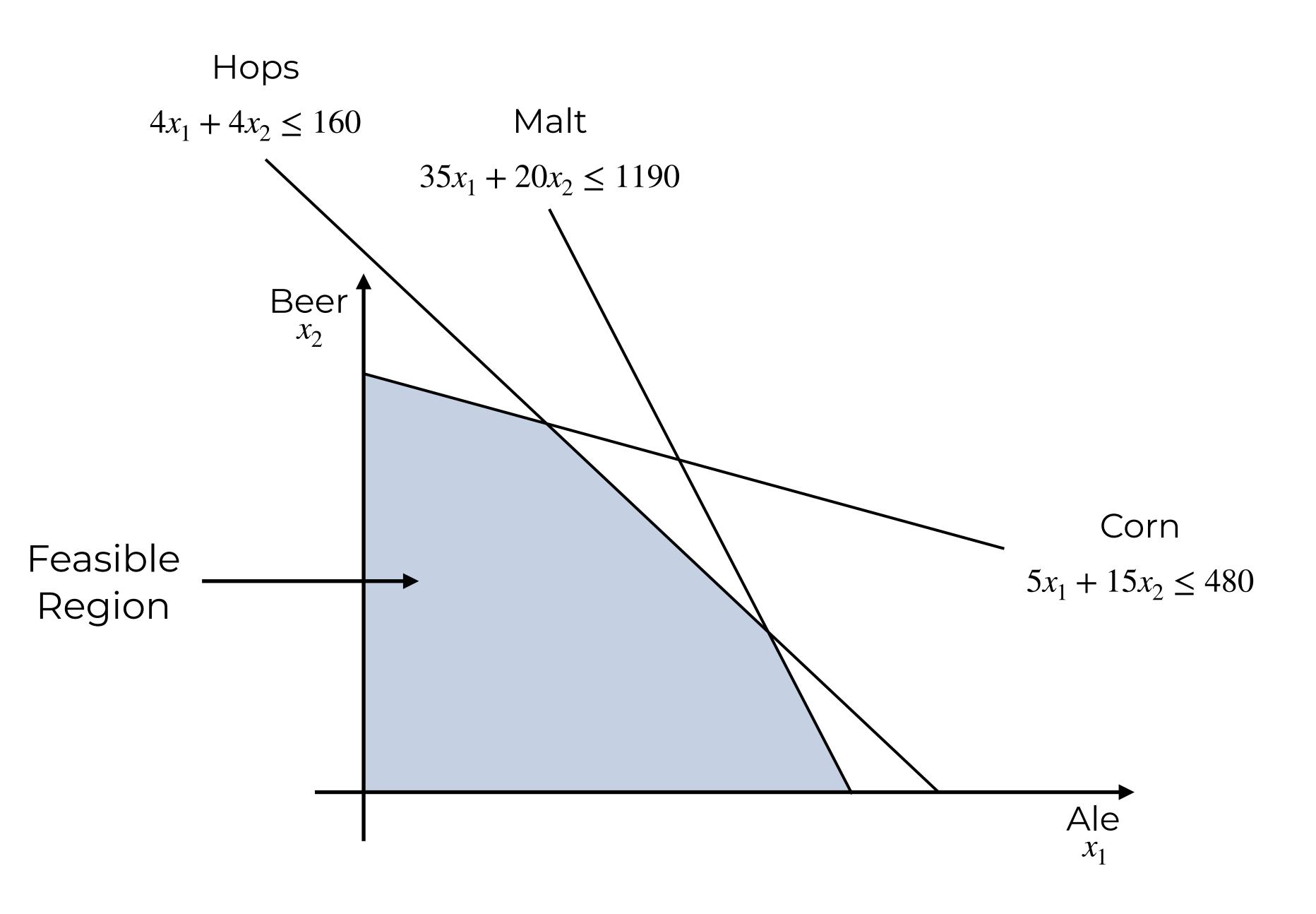
Linear Programming I LP Definition

Feasible Region & Optimal Solutions

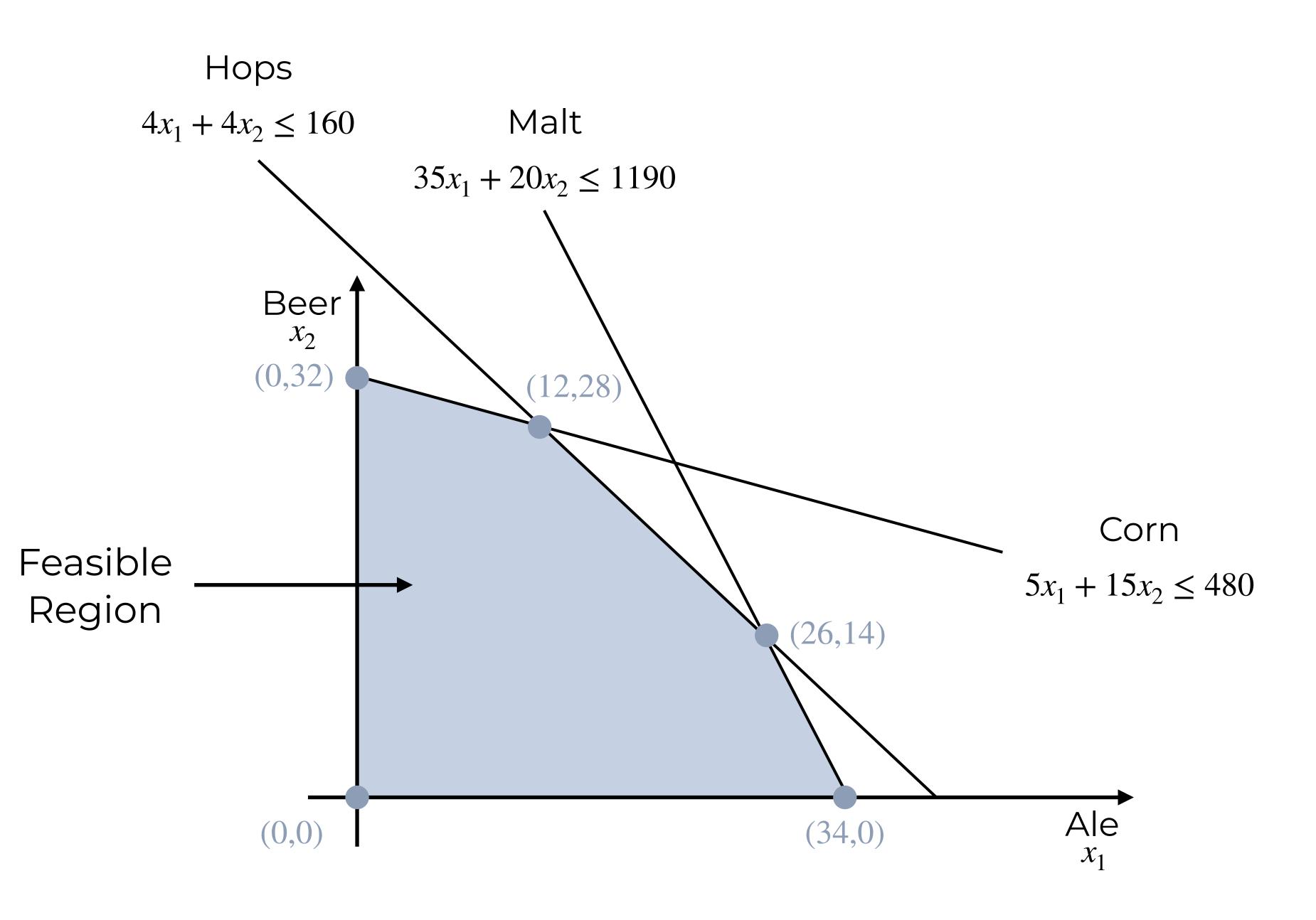
LP Algorithms

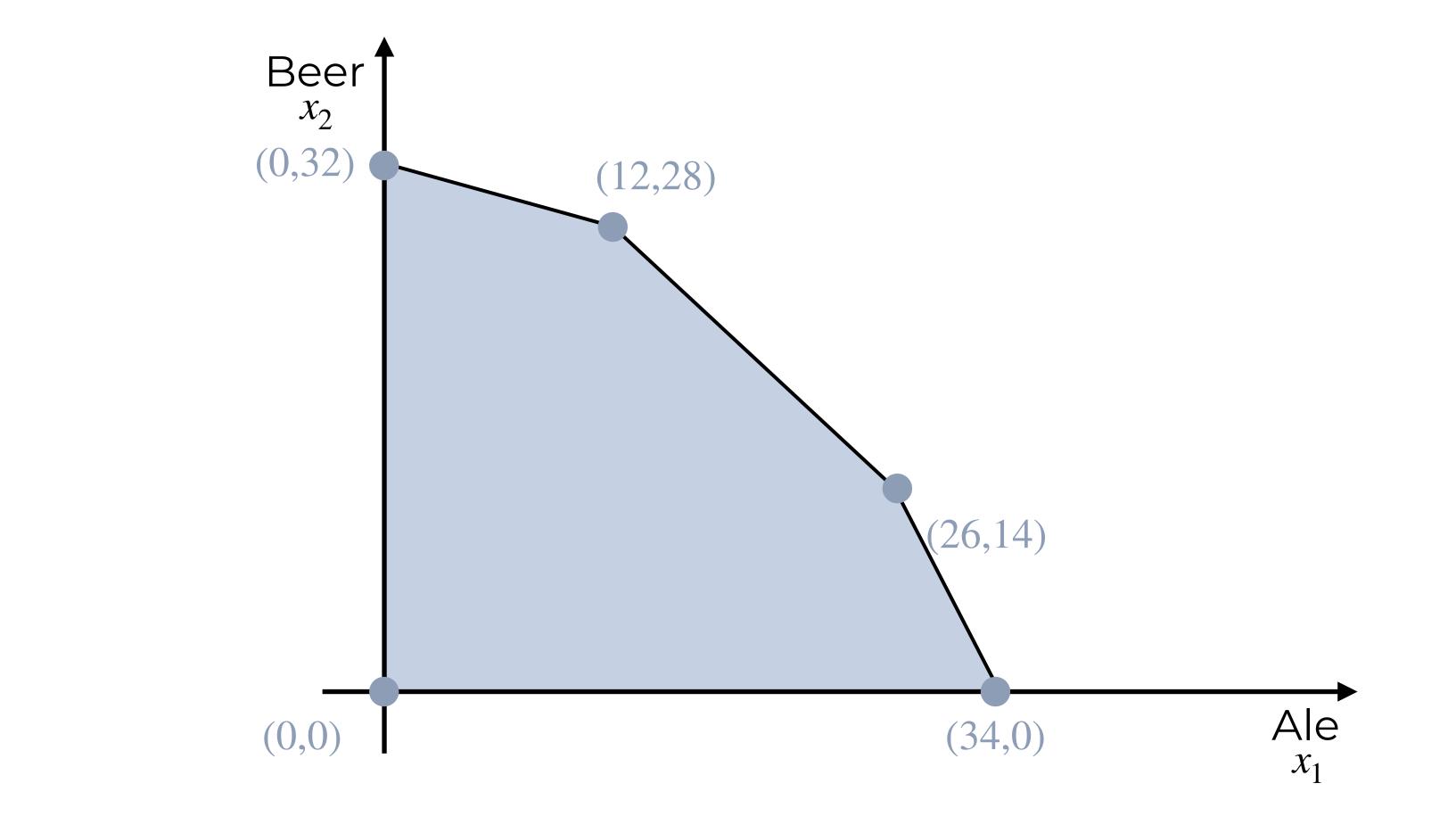


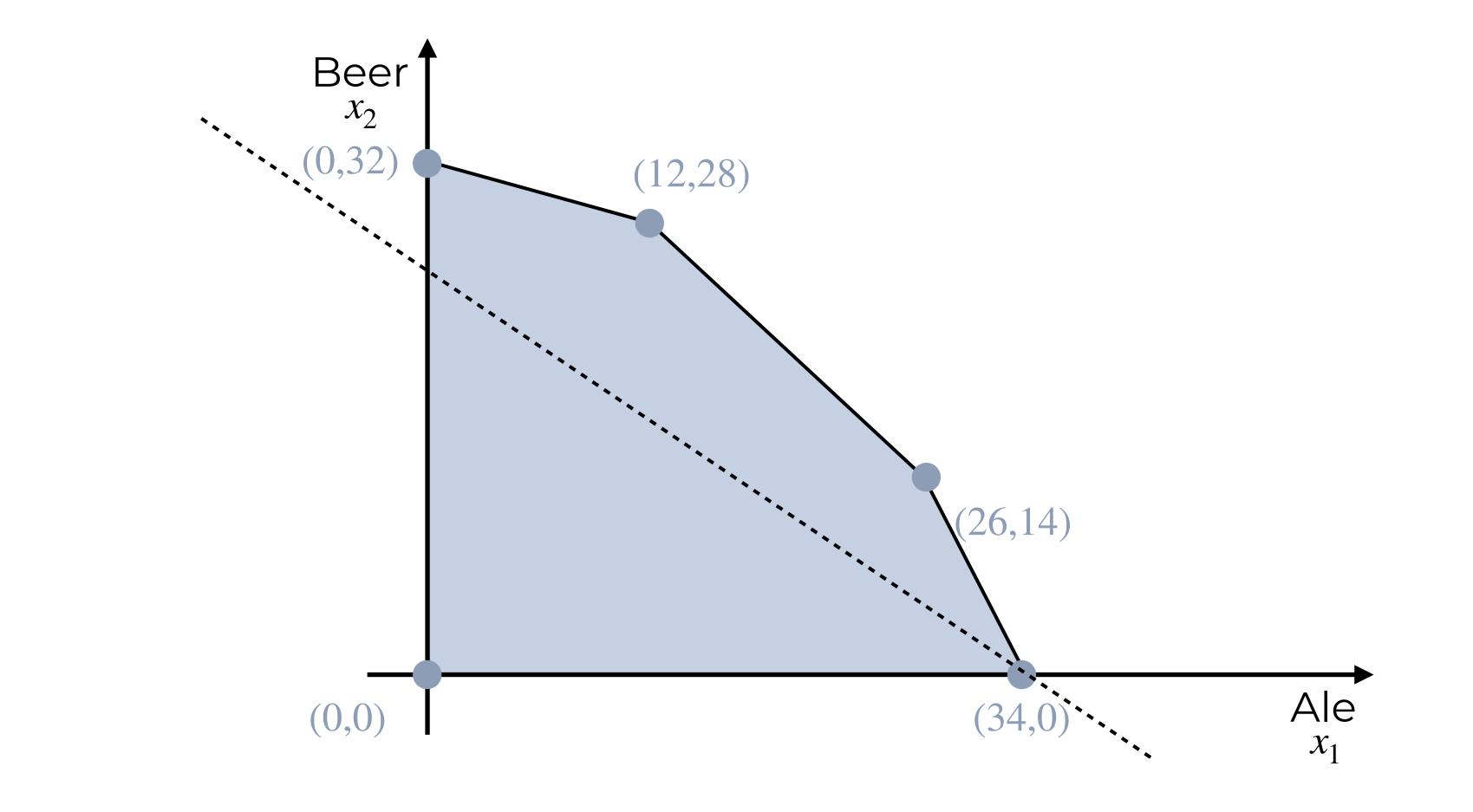
Brewery Example: Feasible Region

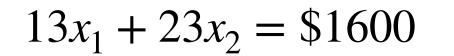


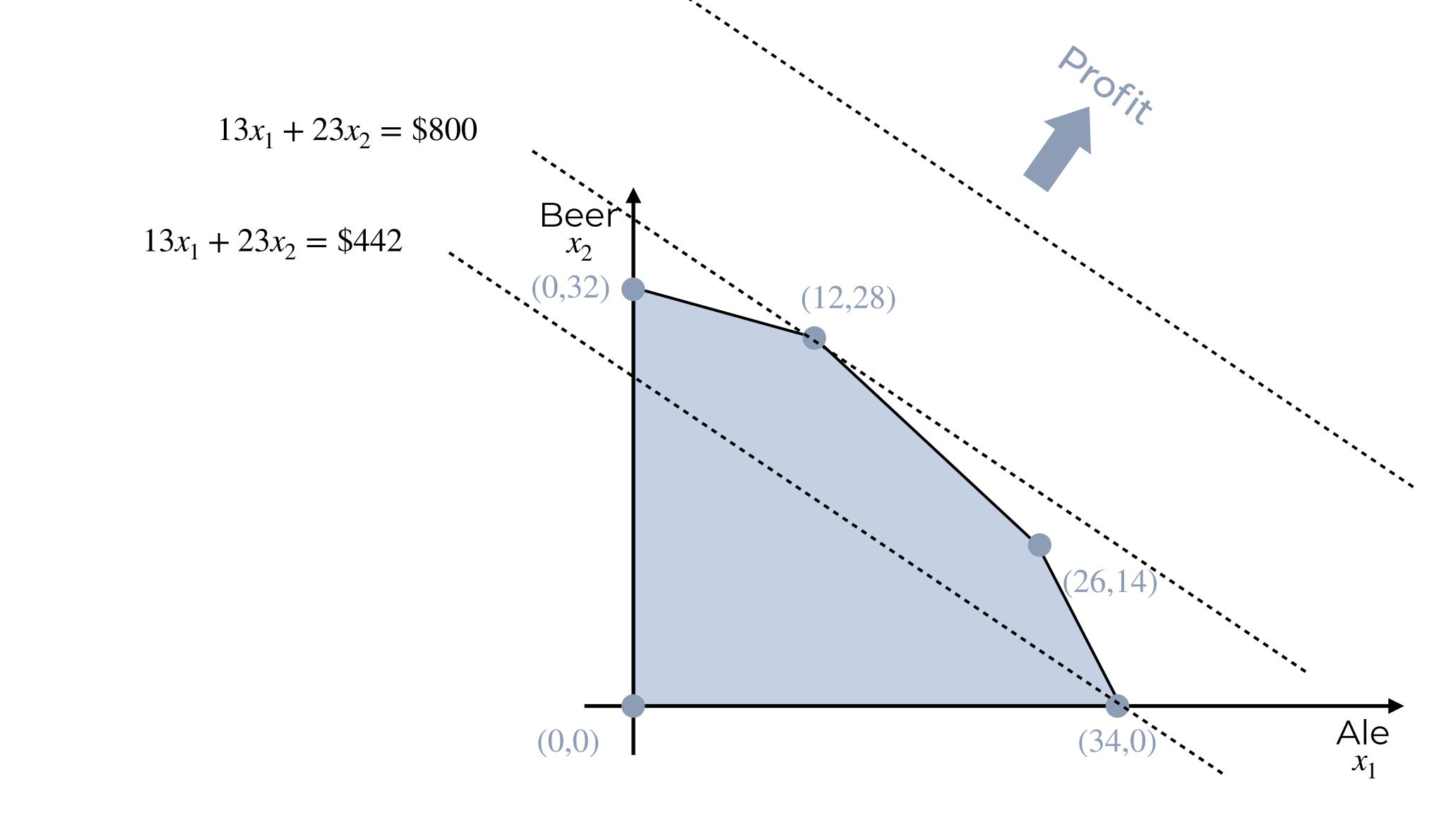
Brewery Example: Feasible Region



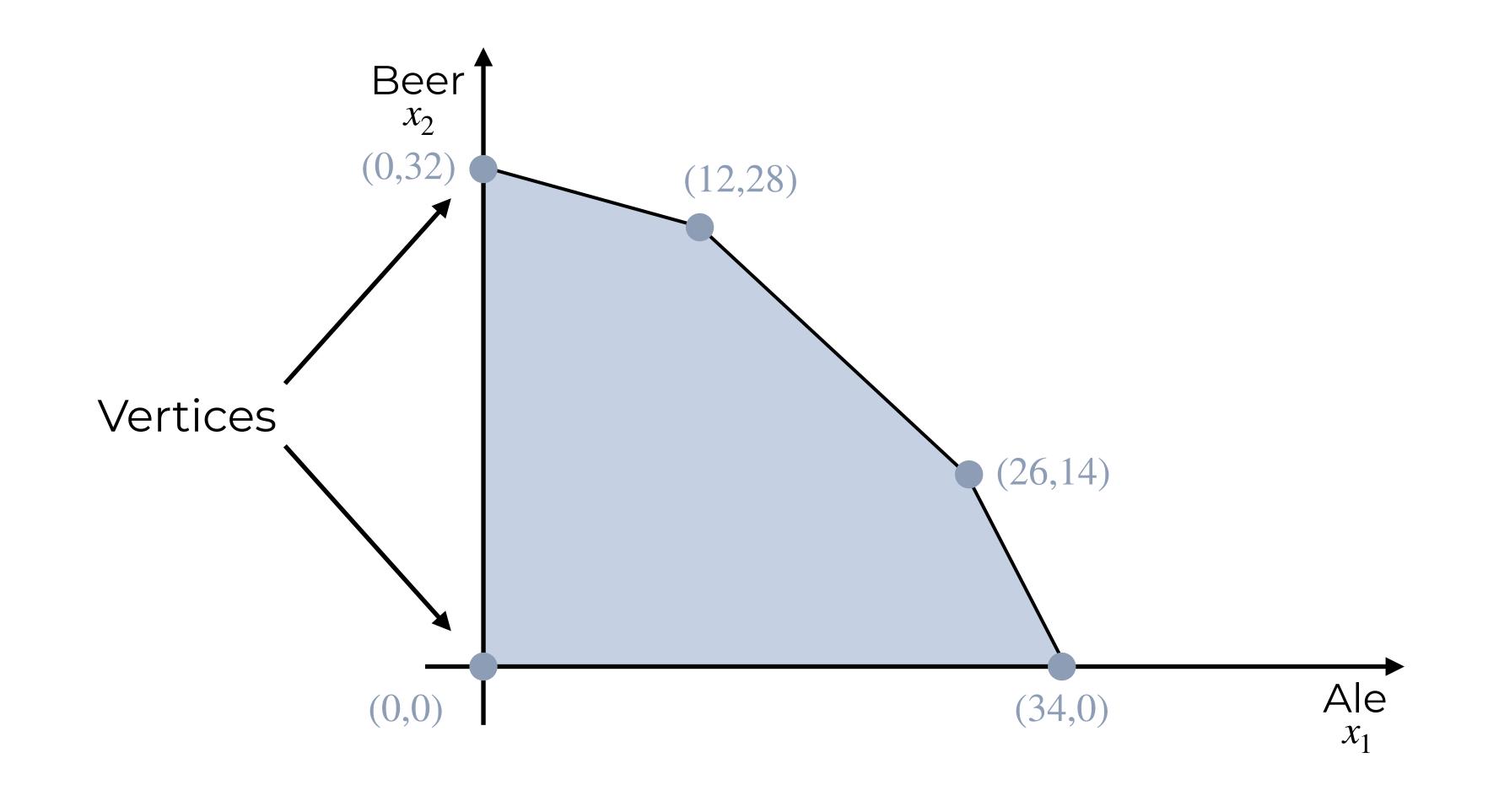






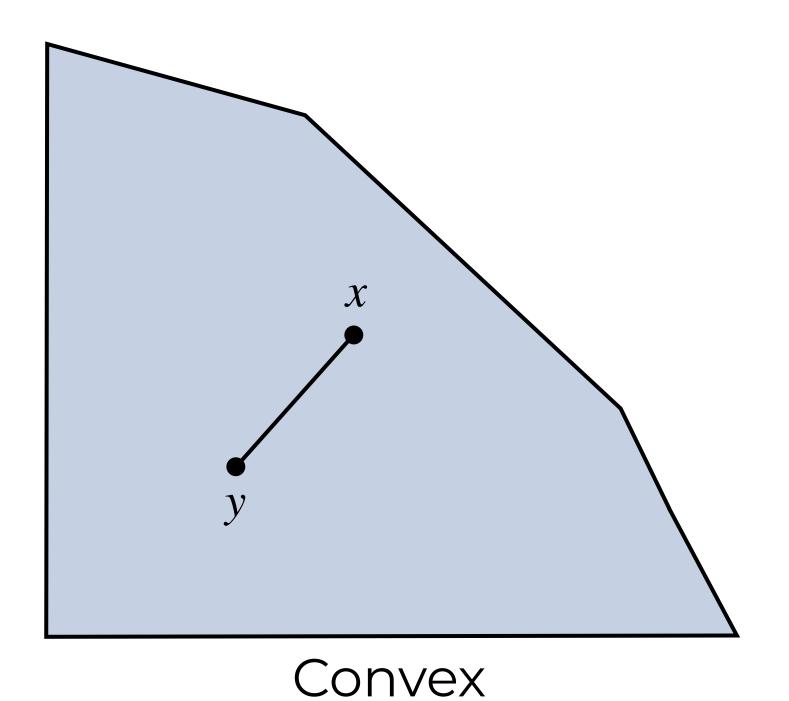


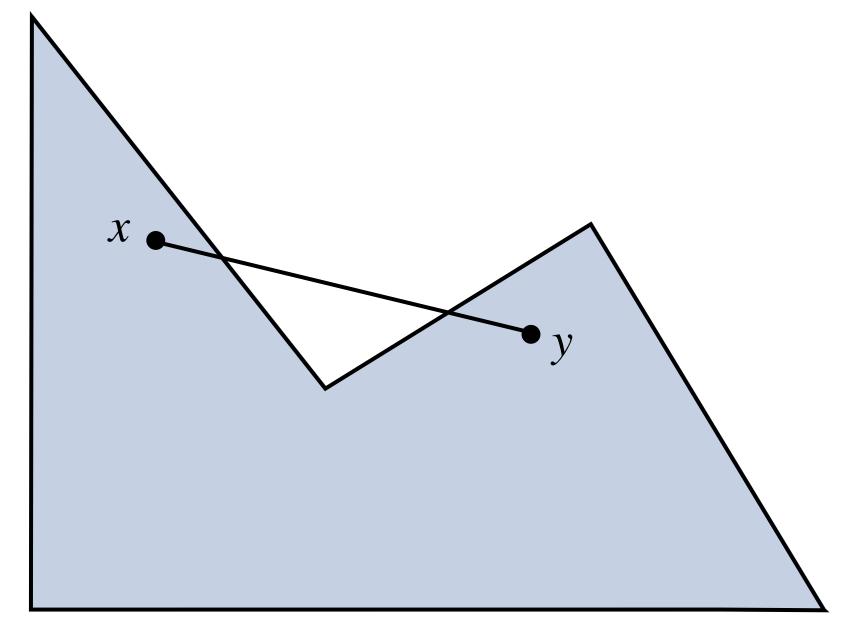
Observation. Regardless of the objective function coefficients, an optimal solution occurs at a vertex.



Convex Combination. Given the points $a^{(1)}, a^{(2)}, \dots, a^{(k)} \in \mathbb{R}^n$, a convex combination is $\sum_{i} \lambda_{i} a^{(i)}$ where $\lambda_{i} \ge 0$ for all *i* and $\sum_{i} \lambda_{i} = 1$.

Convex Set. If two points x and y are in the set, then so is $\lambda x + (1 - \lambda)y$ for $0 \leq \lambda \leq 1.$

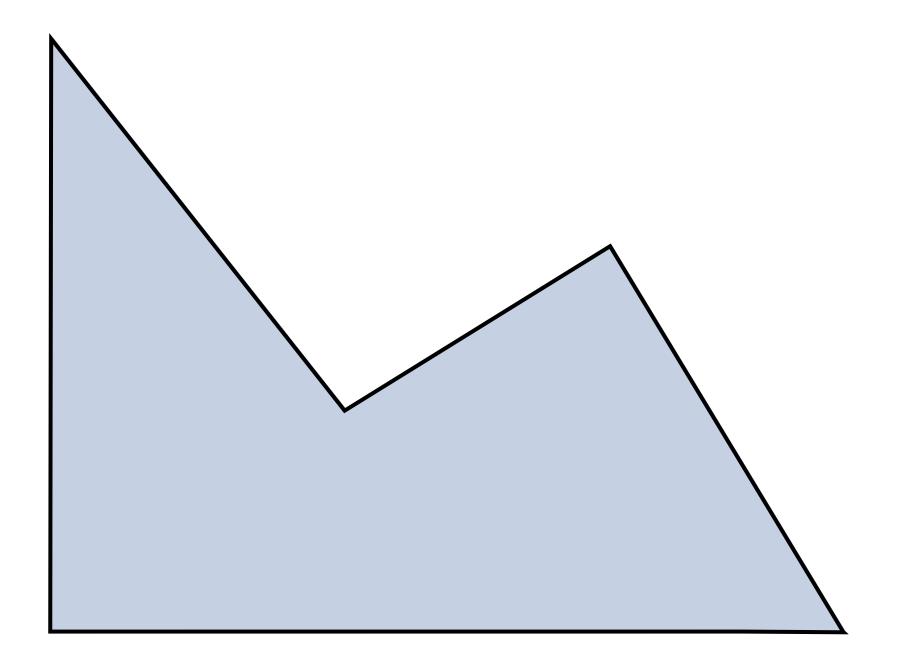


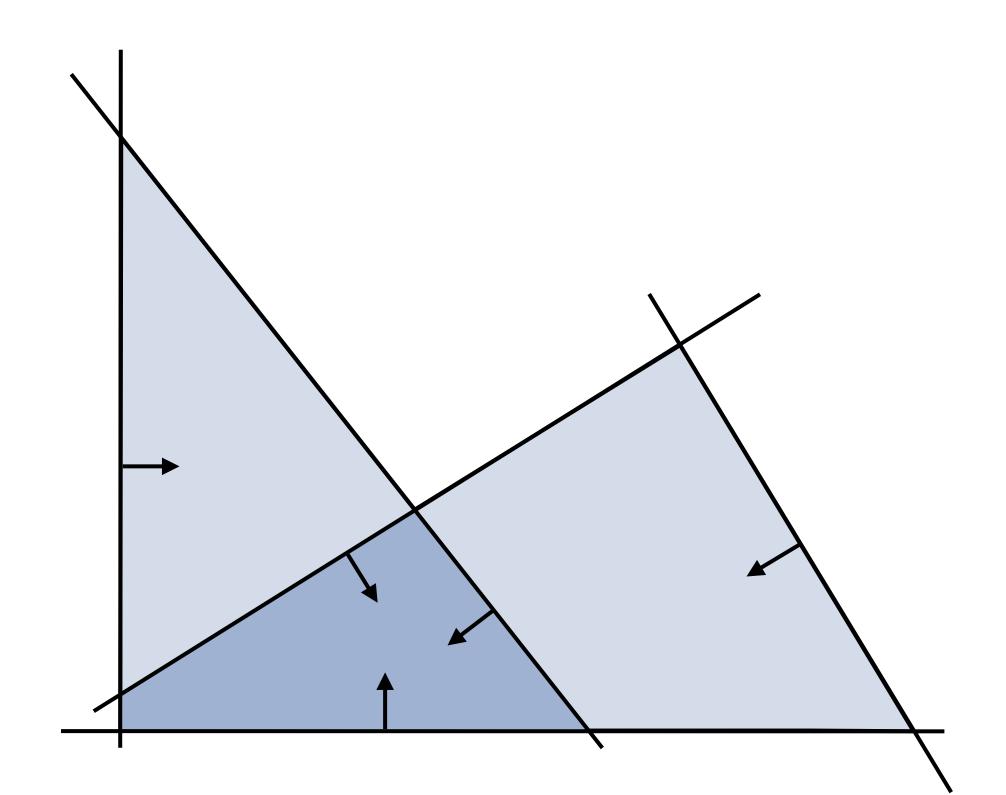


Not Convex

Convex Set. If two points x and y are in the set, then so is $\lambda x + (1 - \lambda)y$ for $0 \leq \lambda \leq 1.$

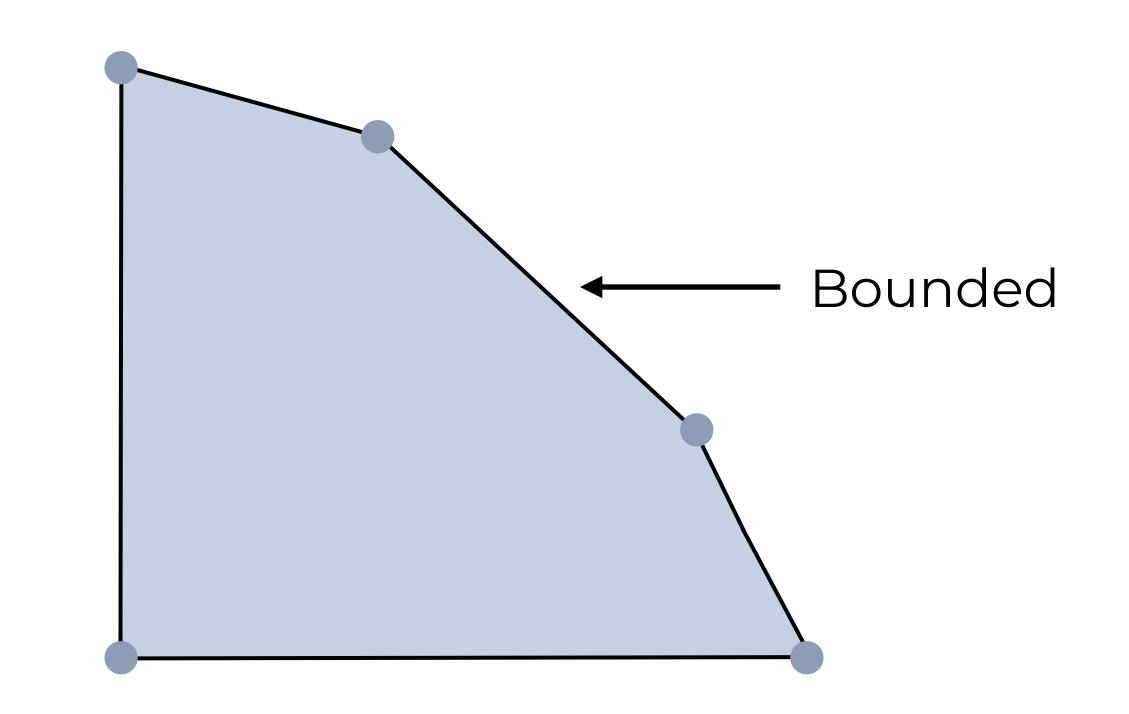
Observation. The feasible region of an LP is a convex set.





Convex Hull. The set of all convex com the convex hull of S.

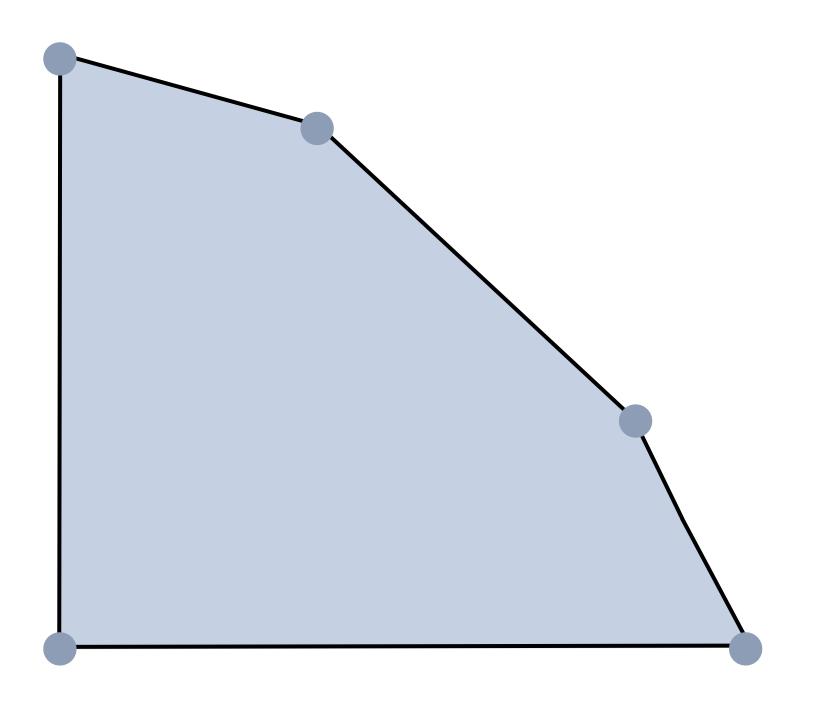
Polytope. A polytope is the convex hull of a finite set of points.

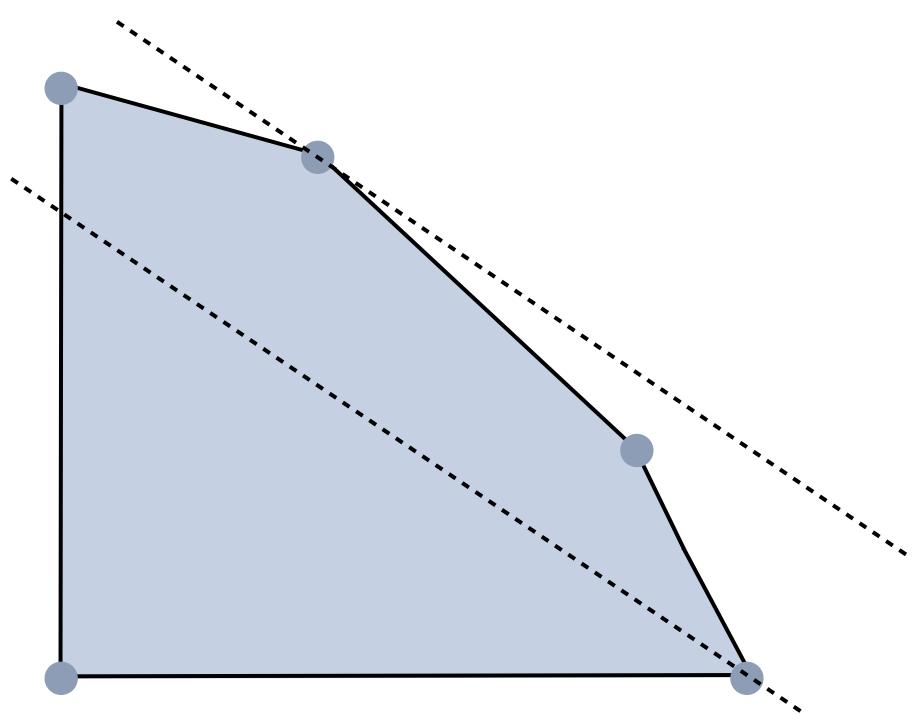


Convex Hull. The set of all convex combinations of elements of a set S is called

Vertex. A point x in a set S that cannot be written as a strict convex combination of two distinct points in S, i.e. $\exists d \neq 0 : x \pm d \in S$.

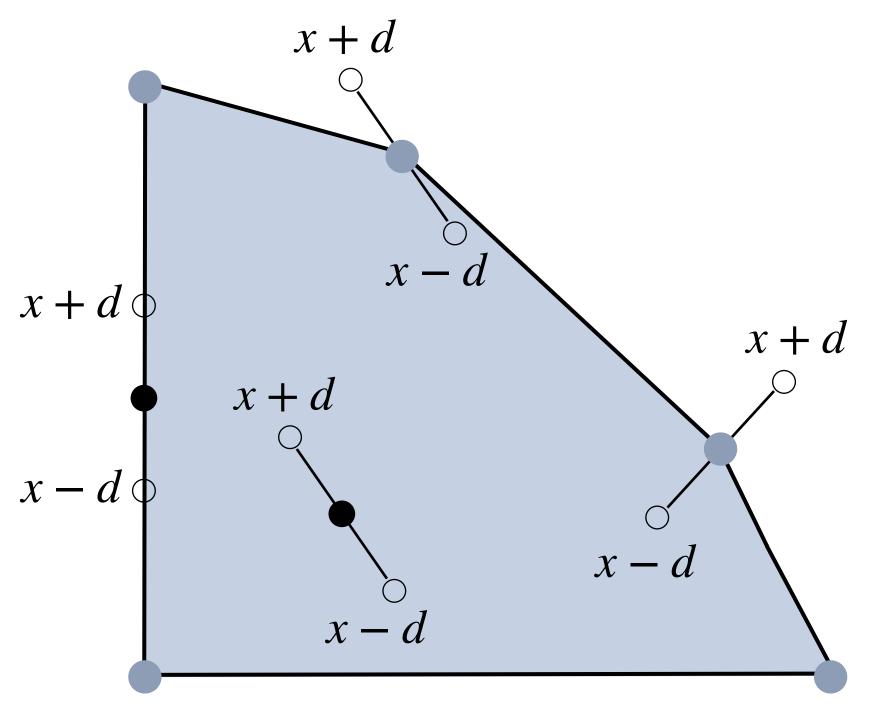
Theorem. If there exists an optimal solution to an LP, then there exists one that is a vertex.

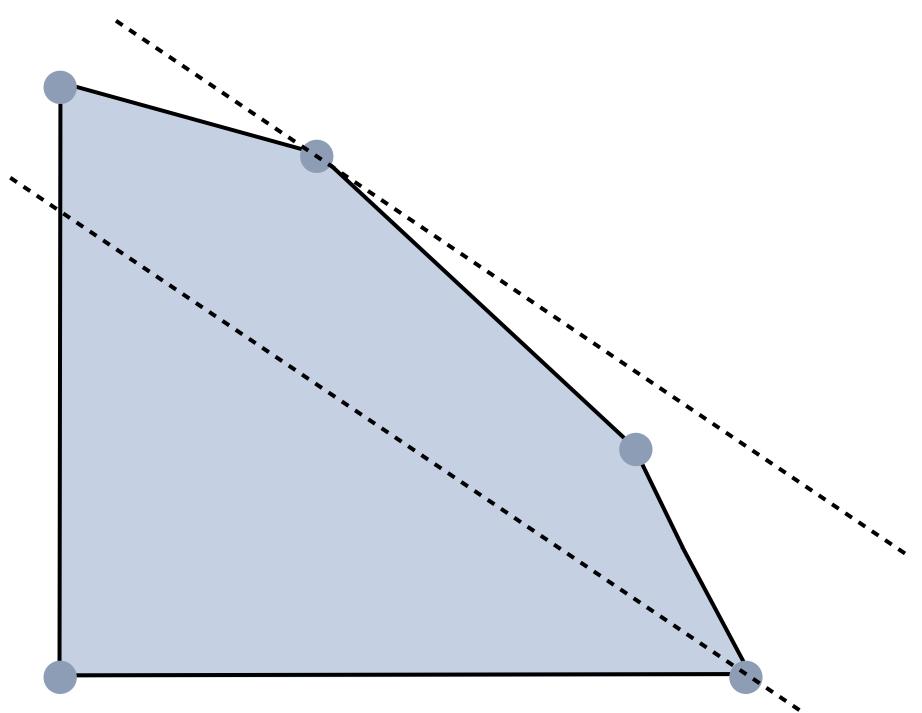




Vertex. A point x in a set S that cannot be written as a strict convex combination of two distinct points in S, i.e. $\exists d \neq 0 : x \pm d \in S$.

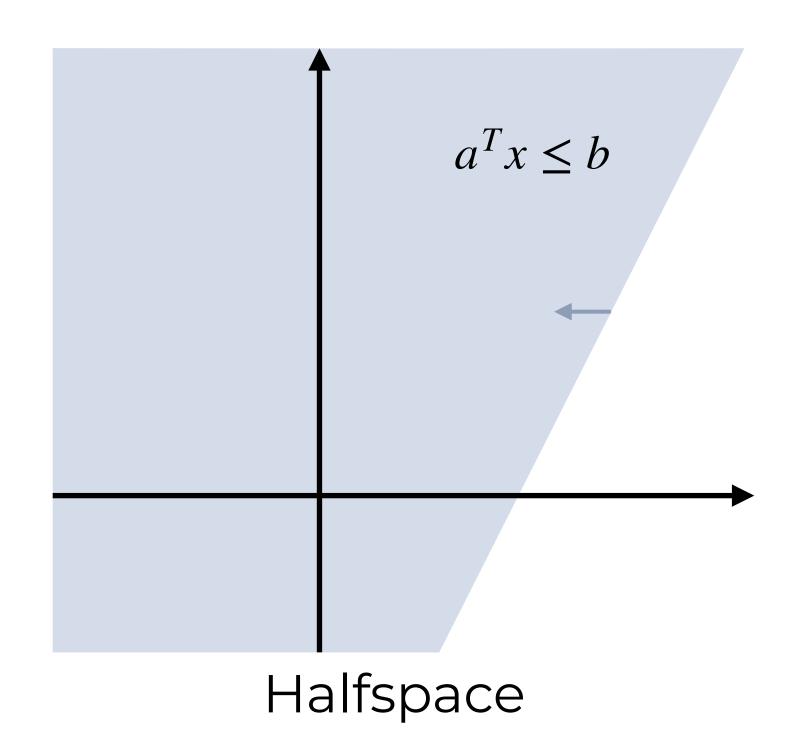
Theorem. If there exists an optimal solution to an LP, then there exists one that is a vertex.





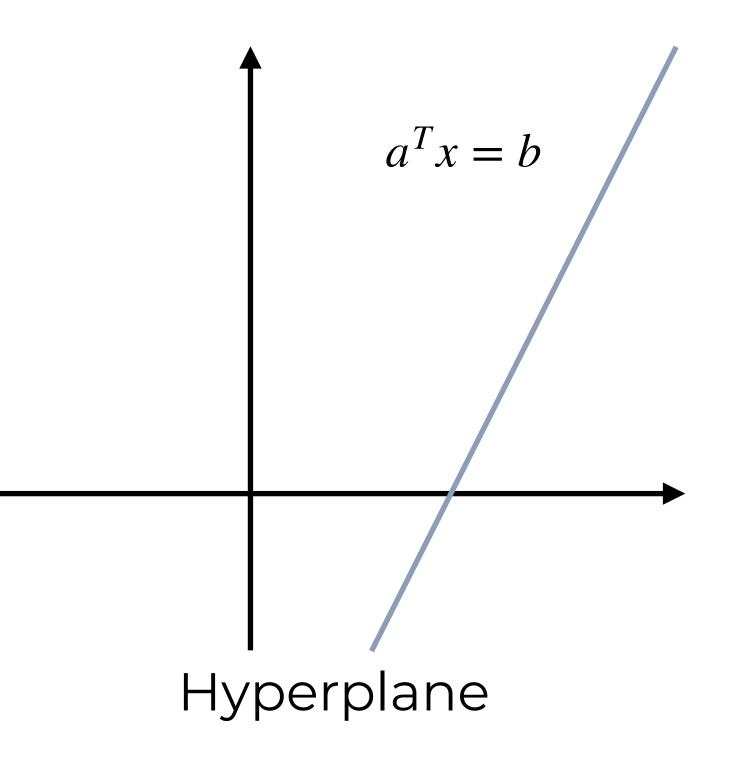
vector $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$.

vector $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$.



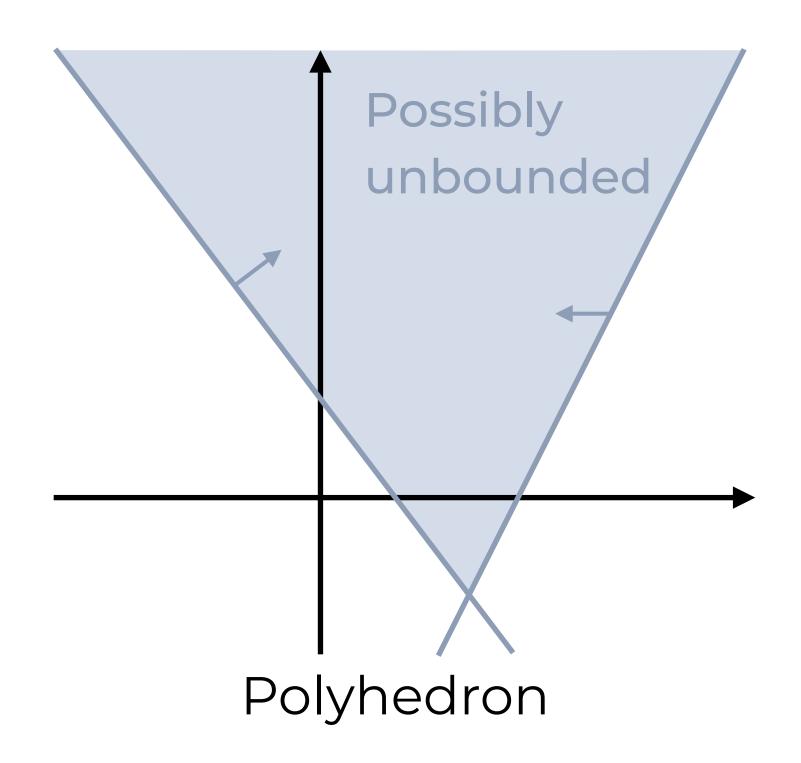
Halfspace. A halfspace in \mathbb{R}^n is a set of the form $\{x \in \mathbb{R}^n : a^T x \leq b\}$ for some

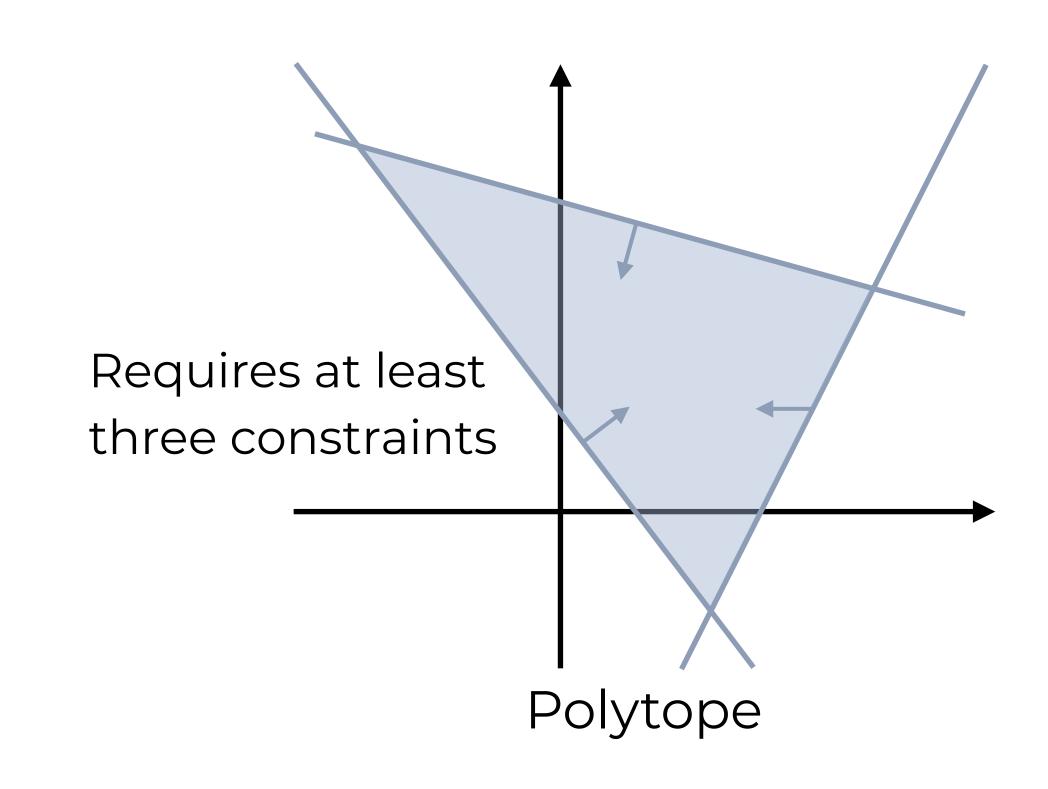
Hyperplane. A hyperplane in \mathbb{R}^n is a set of the form $\{x \in \mathbb{R}^n : a^T x = b\}$ for some



Polyhedron. A polyhedron $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ is the intersection of finitely many halfspaces.

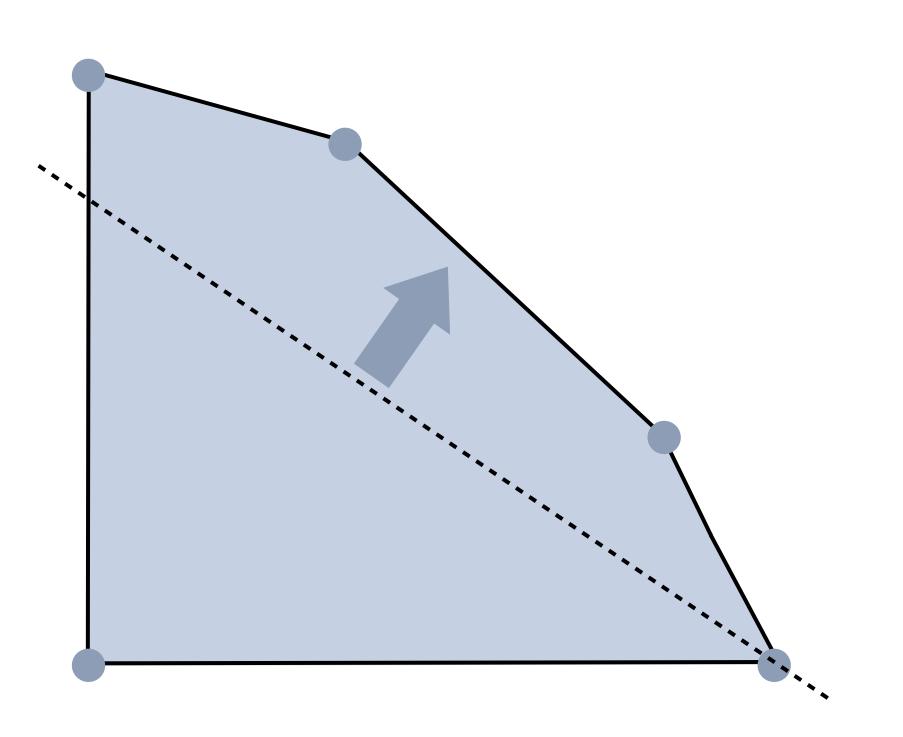
Polytope. A polytope is a bounded polyhedron.

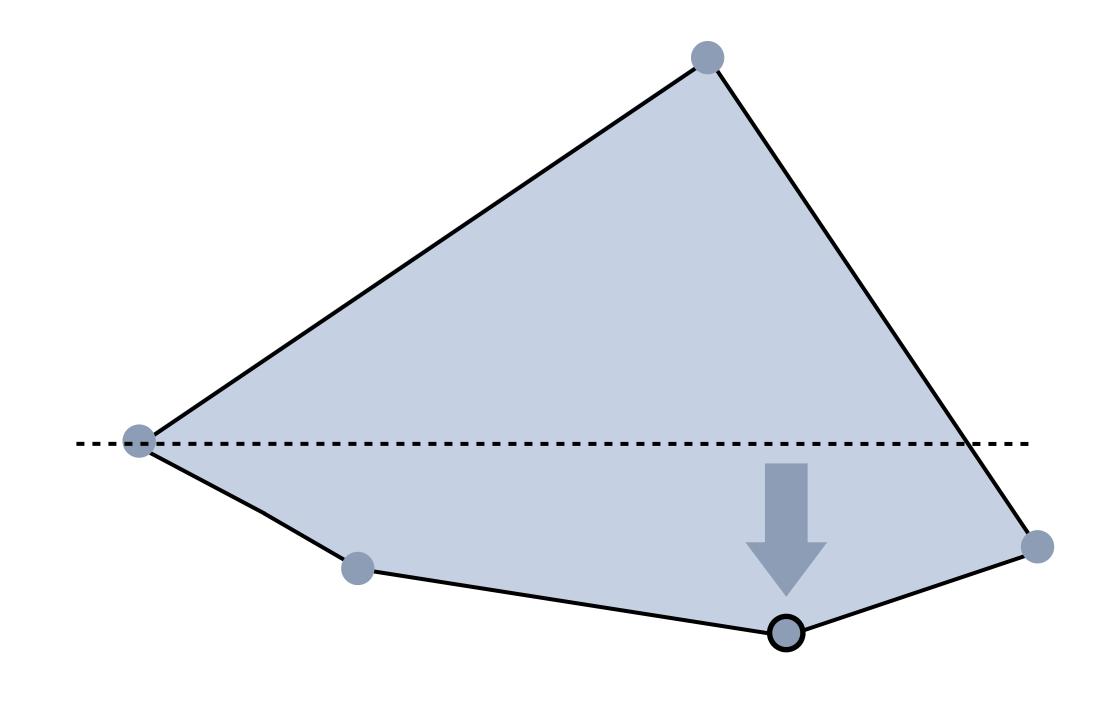




By rotating \mathbb{R}^n such that the objective function points downward, any LP can be expressed in the following geometric form:

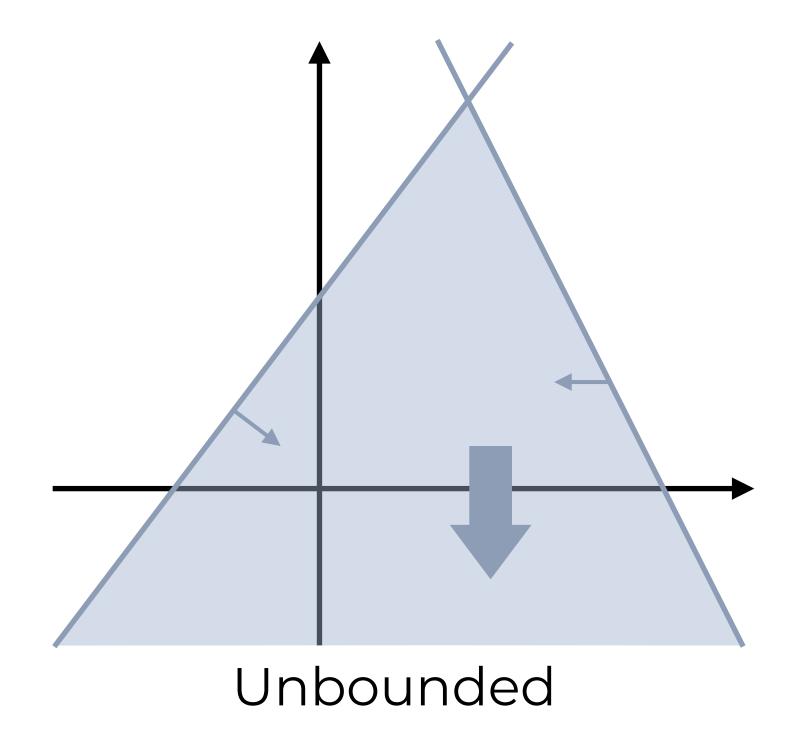
Find the lowest point in a given polyhedron.

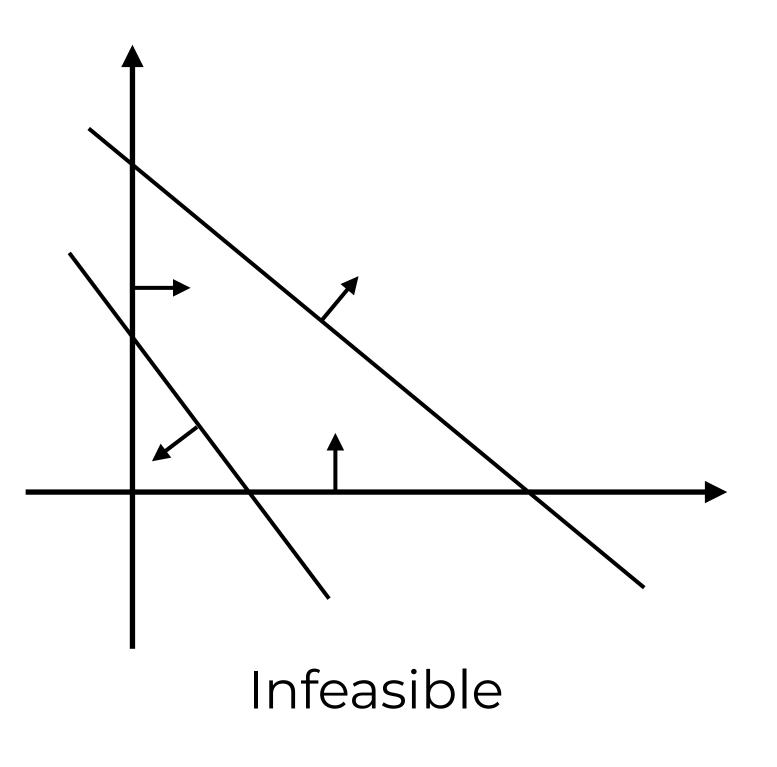




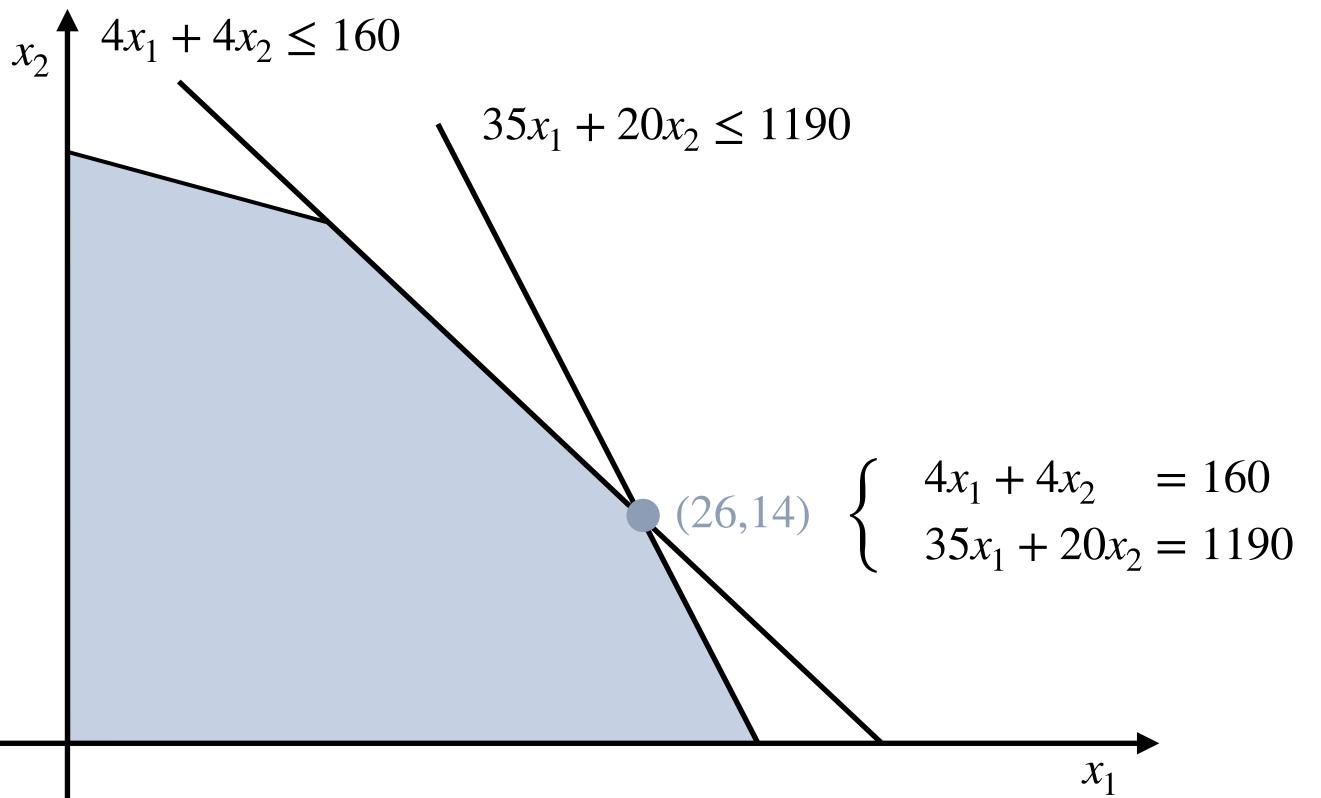
By rotating \mathbb{R}^n such that the objective function points downward, any LP can be expressed in the following geometric form:

Find the lowest point in a given polyhedron.





Intuition Vertex. A vertex in \mathbb{R}^n is uniquely specified by *n* linearly independent equations.



• $A_R \in \mathbb{R}^{m \times m}$ is nonsingular,

•
$$x_B = A_B^{-1}b \ge 0$$
,

•
$$x_N = \mathbf{0}$$
.

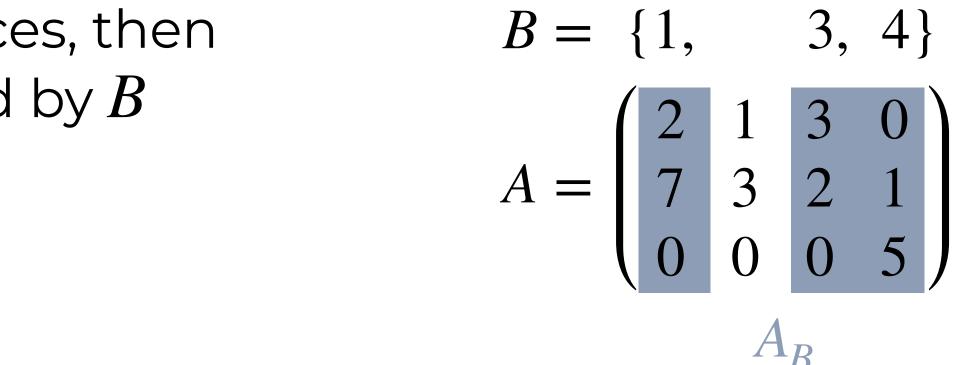
• $A_R \in \mathbb{R}^{m \times m}$ is nonsingular,

•
$$x_B = A_B^{-1}b \ge 0$$
,

•
$$x_N = \mathbf{0}$$
.

Notation.

Let B be the set of column indices, then • A_{R} is the submatrix of A indexed by B



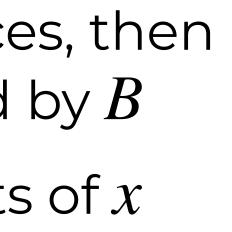
• $A_R \in \mathbb{R}^{m \times m}$ is nonsingular,

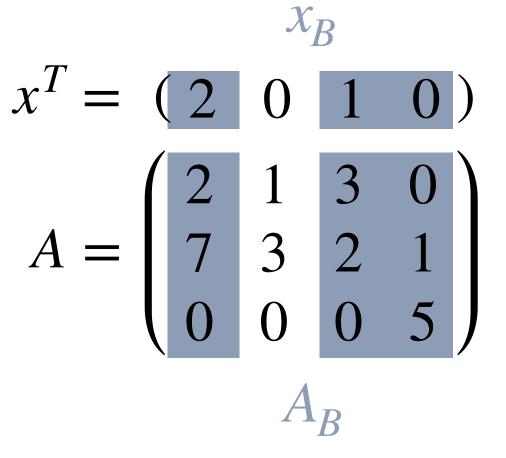
•
$$x_B = A_B^{-1}b \ge 0$$
,

•
$$x_N = \mathbf{0}$$
.

Notation.

- Let B be the set of column indices, then • A_{R} is the submatrix of A indexed by B
- Let x_R denote the *m* components of *x* • associated with A_R





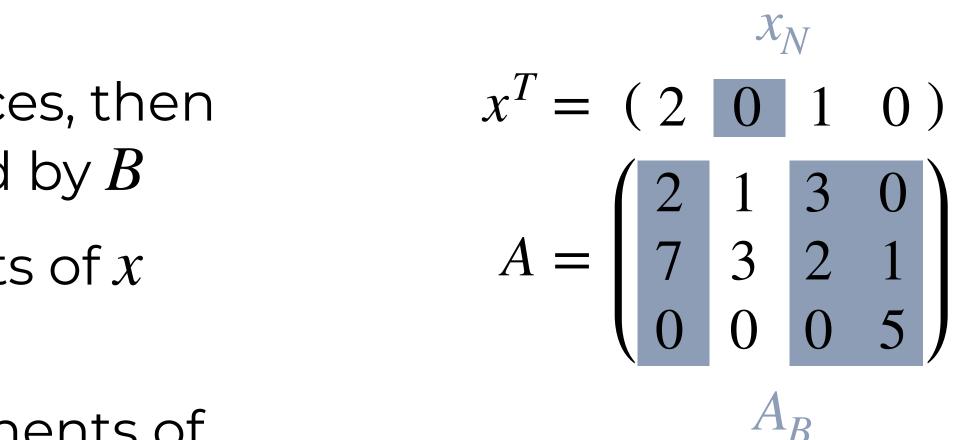
• $A_R \in \mathbb{R}^{m \times m}$ is nonsingular,

•
$$x_B = A_B^{-1}b \ge 0$$
,

•
$$x_N = \mathbf{0}$$
.

Notation.

- Let B be the set of column indices, then • A_{R} is the submatrix of A indexed by B
- Let x_B denote the *m* components of *x* • associated with A_{R}
- Let denote x_N the n m components of x not associated with A_R



• $A_R \in \mathbb{R}^{m \times m}$ is nonsingular,

•
$$x_B = A_B^{-1}b \ge 0$$
,

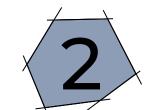
•
$$x_N = \mathbf{0}$$
.

Example.

$$A = \begin{pmatrix} 2 & 1 & 3 & 0 \\ 7 & 3 & 2 & 1 \\ 0 & 0 & 0 & 5 \end{pmatrix}, \quad x = \\ A_B x_B = \begin{pmatrix} 2 & 3 & 0 \\ 7 & 2 & 1 \\ 0 & 0 & 5 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} =$$

$$\begin{pmatrix} 2 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \quad b = \begin{pmatrix} 7 \\ 16 \\ 0 \end{pmatrix}, \quad B = \{1, 3, 4\}, \quad N = \{2\}$$

$$\begin{pmatrix} 7\\16\\0 \end{pmatrix} = b$$



Geometry: Polyhedral Combinatorics

Theorem.

- Í)
- feasible solution.

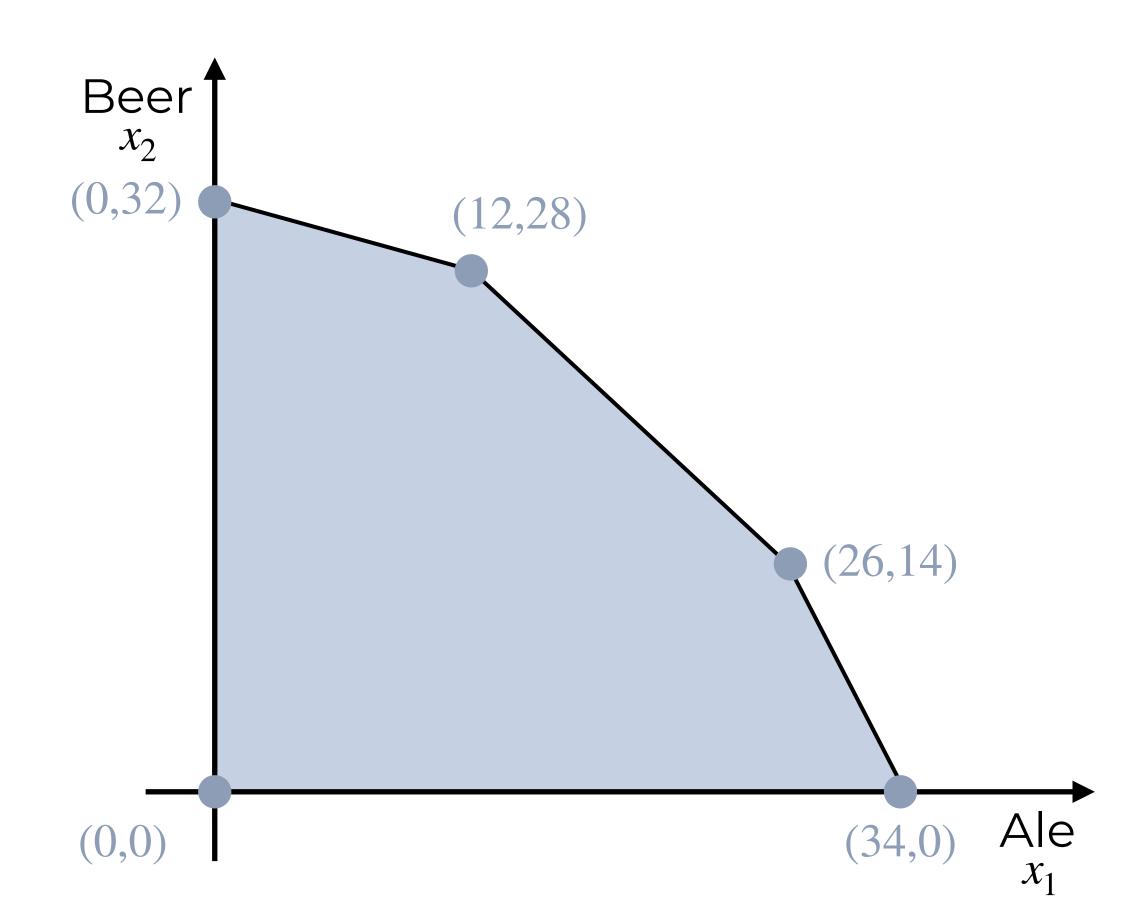
Observation. Thus, the task of solving a LP is reduced to that of searching over basic feasible solutions. For a problem with *n* variables and *m* constraints there are at most

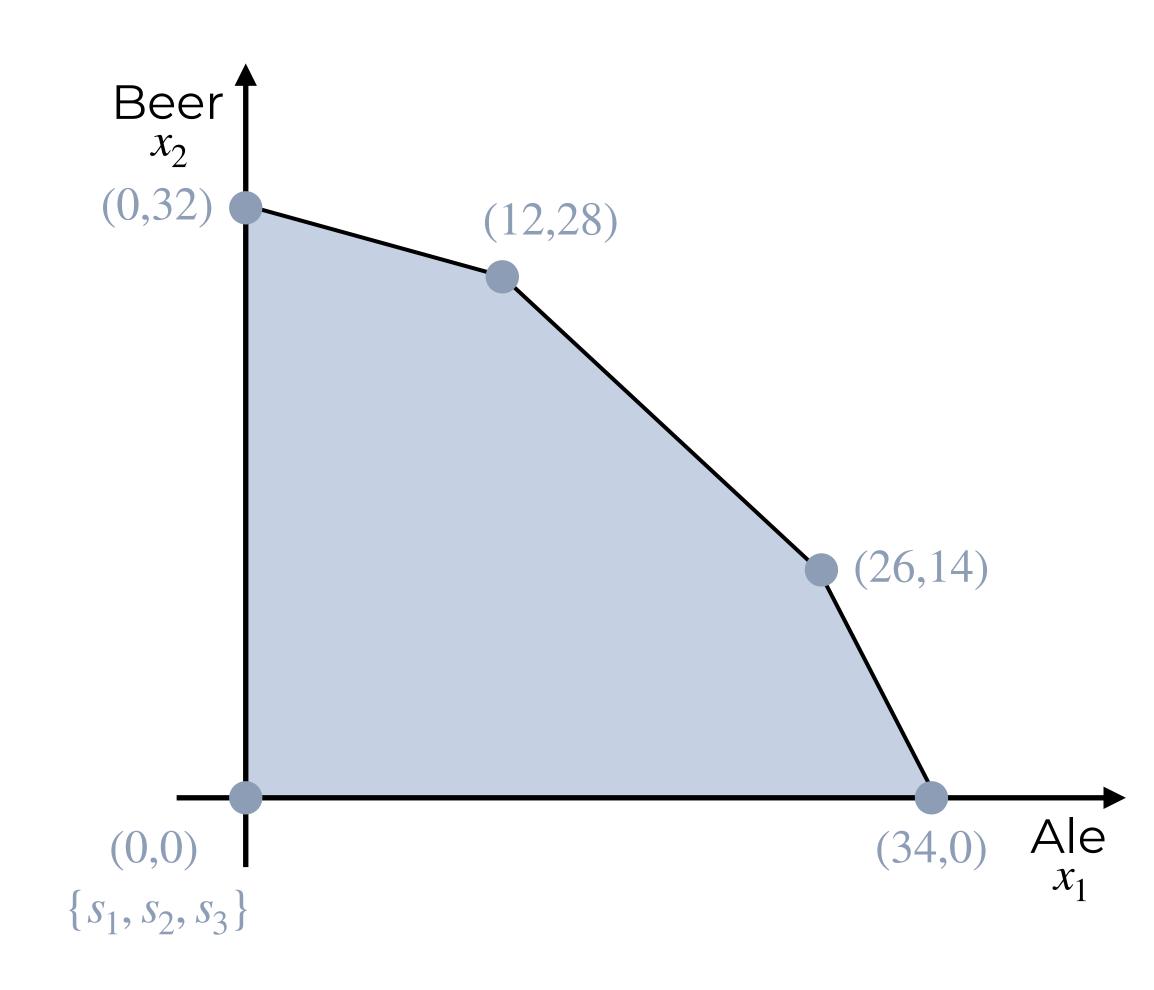
 $\binom{n}{m} = \frac{n!}{m!(n-m)!}$

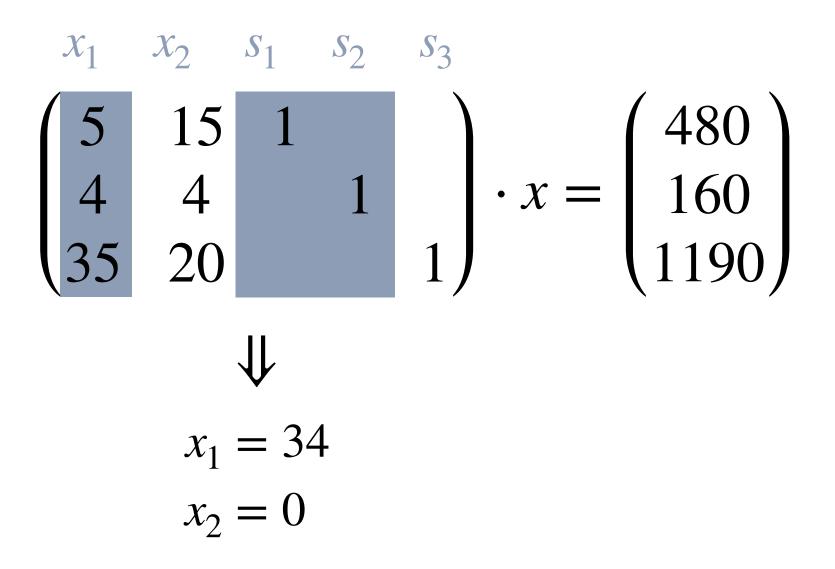
basic feasible solutions.

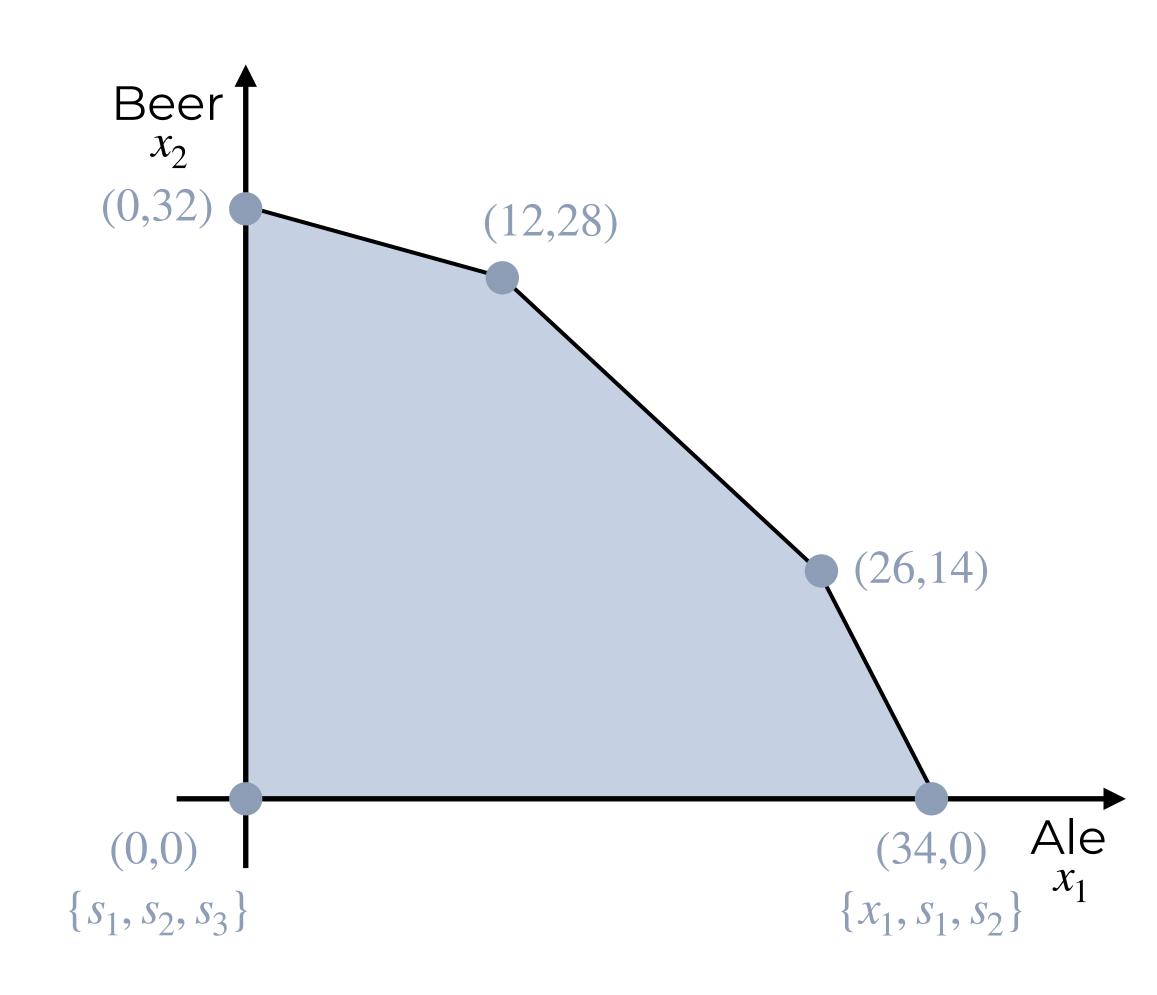
If there exists a feasible solution, there exists a basic feasible solution. ii) If there exists an optimal feasible solution, there exists an optimal basic

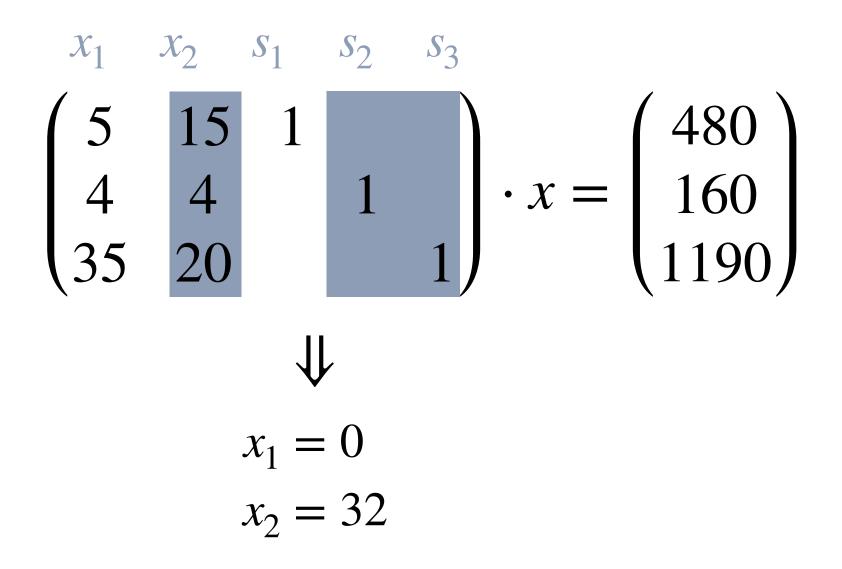
$$\begin{pmatrix} x_1 & x_2 & s_1 & s_2 & s_3 \\ (5 & 15 & 1 & & \\ 4 & 4 & & 1 & \\ 35 & 20 & & & 1 \end{pmatrix} \cdot x = \begin{pmatrix} 480 \\ 160 \\ 1190 \end{pmatrix}$$

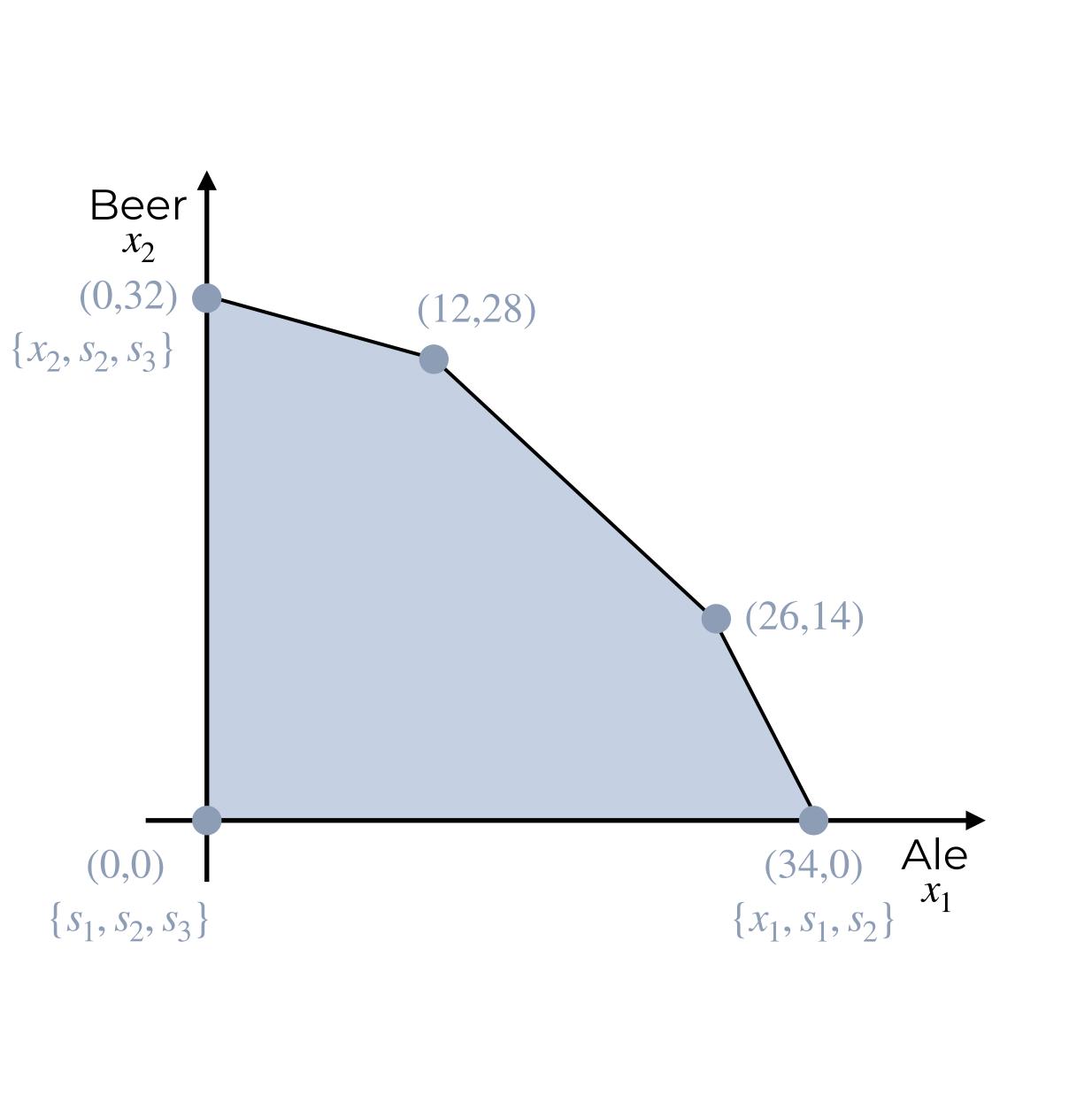


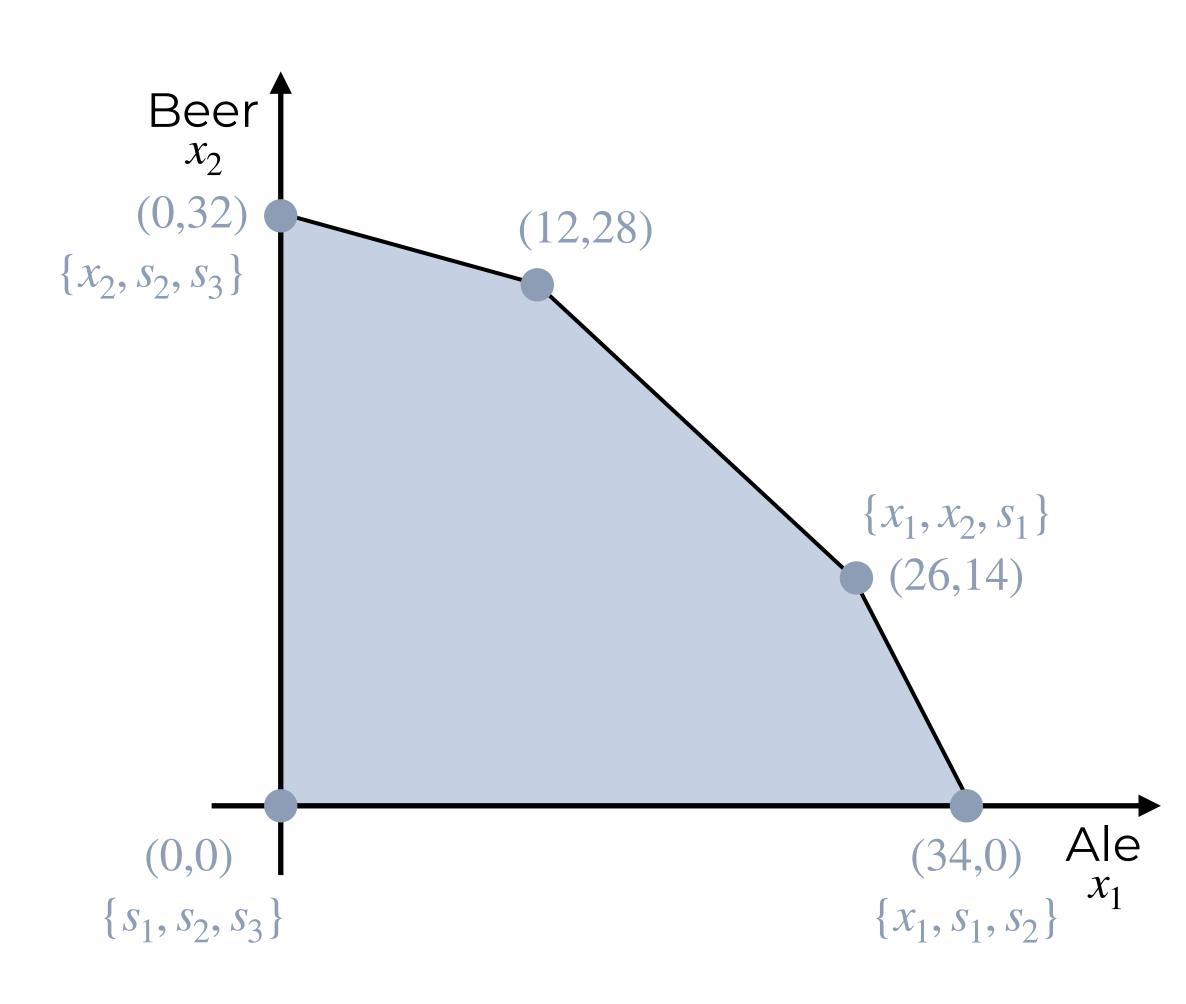


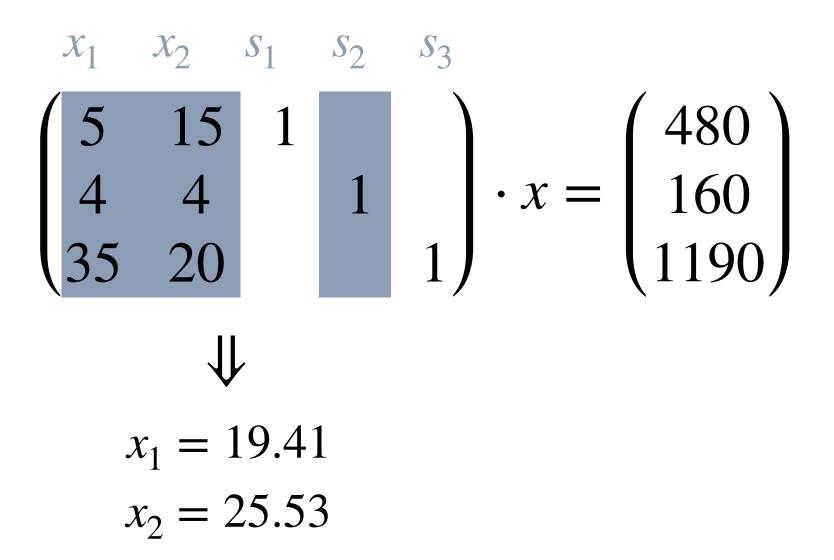


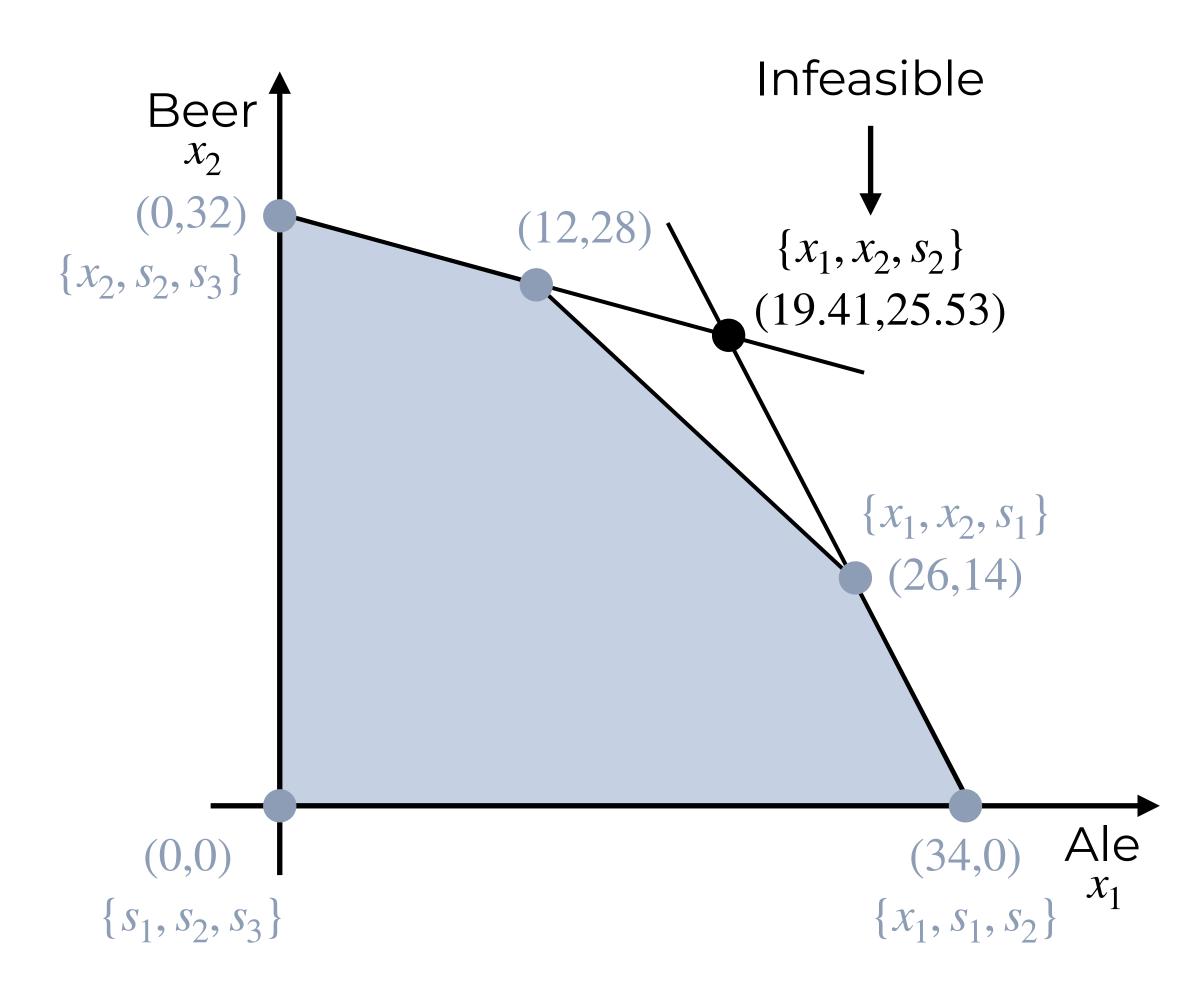


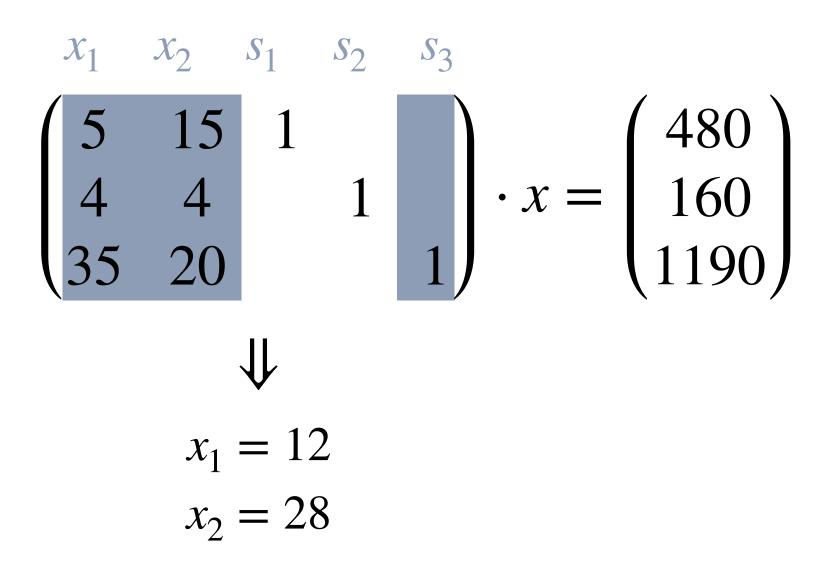


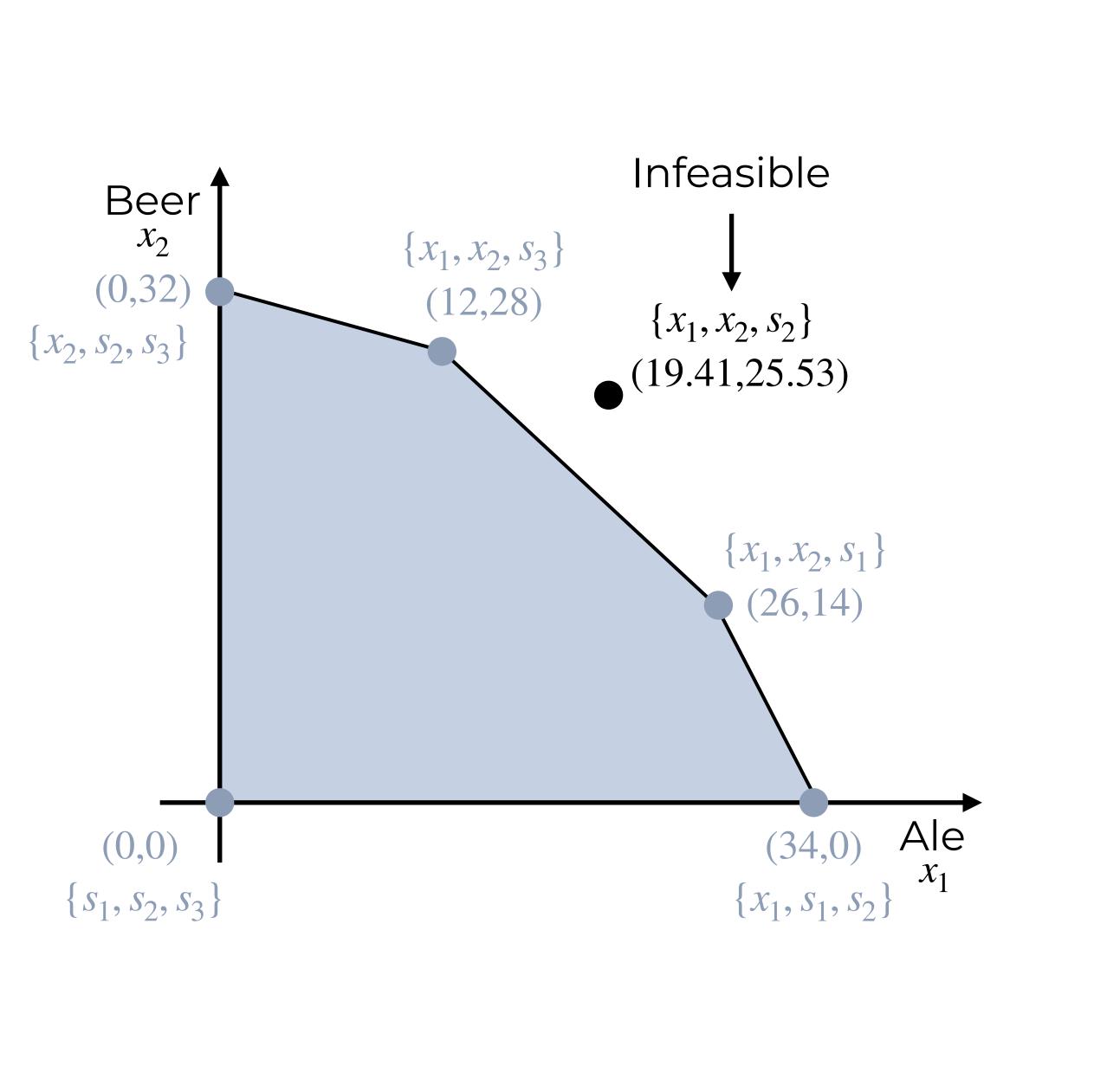








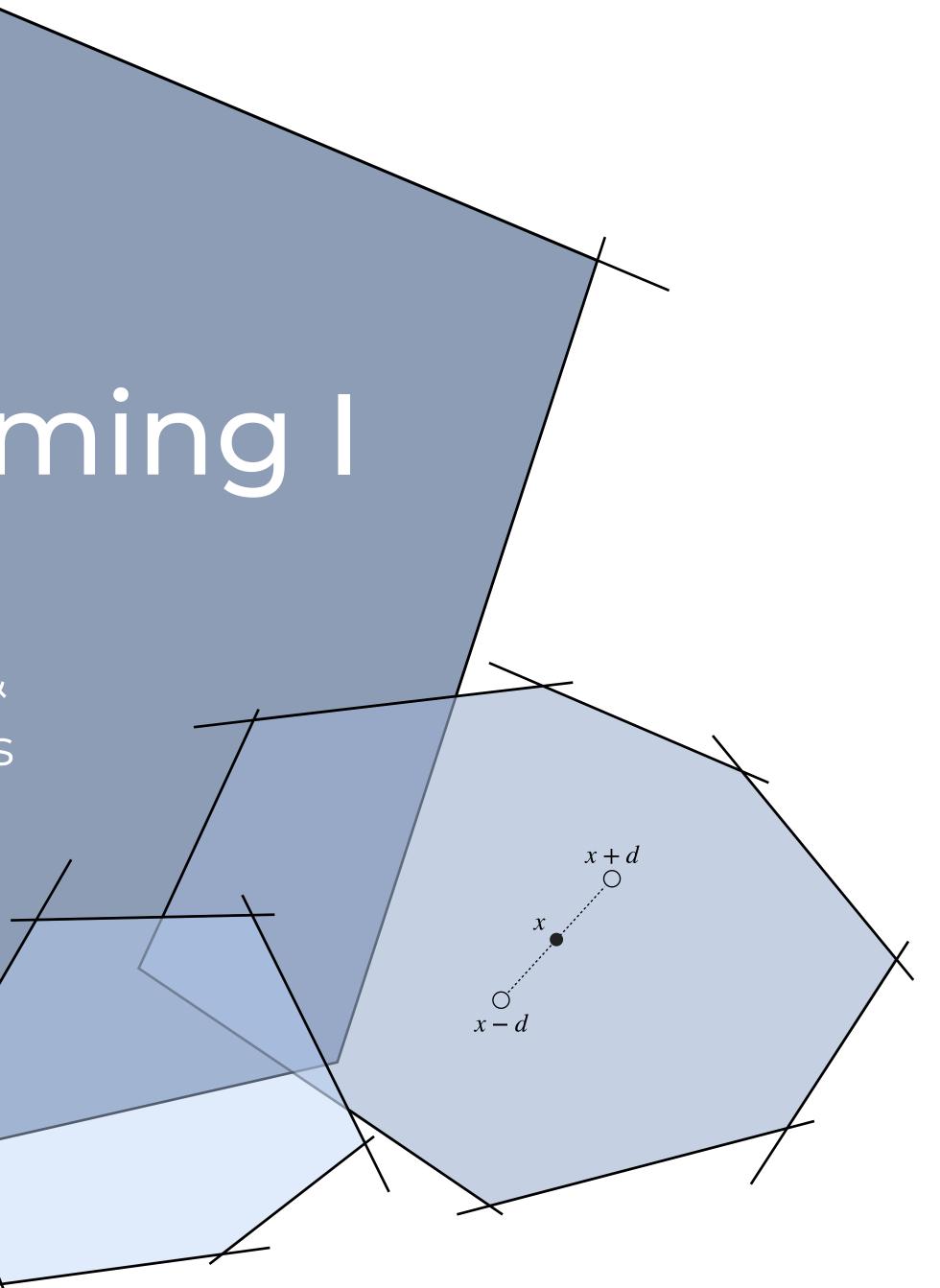




Linear Programming I LP Definition

Feasible Region & Optimal Solutions

LP Algorithms



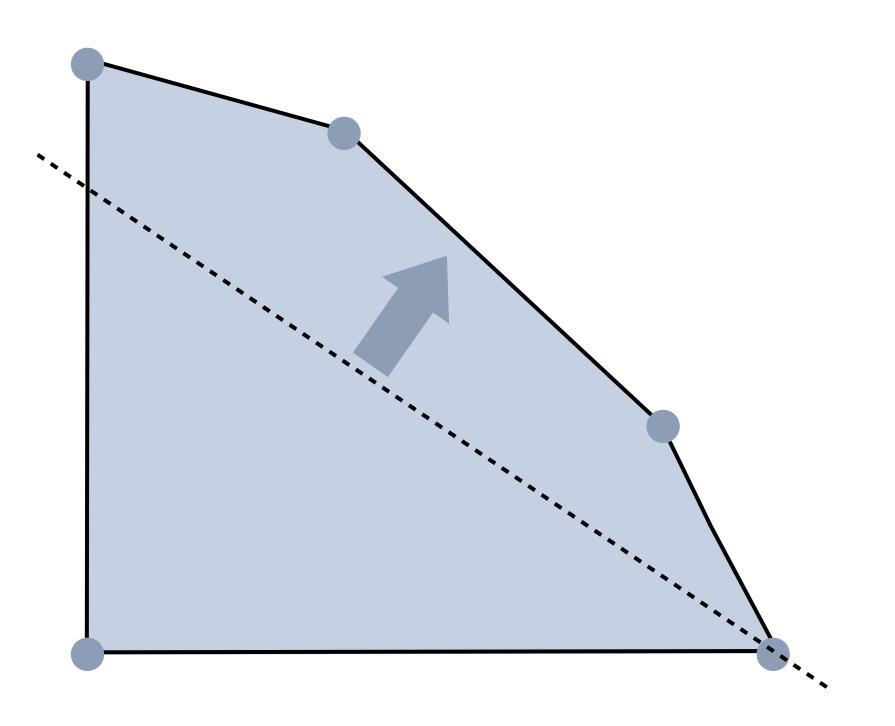
Goal. Given $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ and $c \in \mathbb{R}^n$, solve $\max\{c^T x : Ax \le b, x \in \mathbb{R}^n\}$.

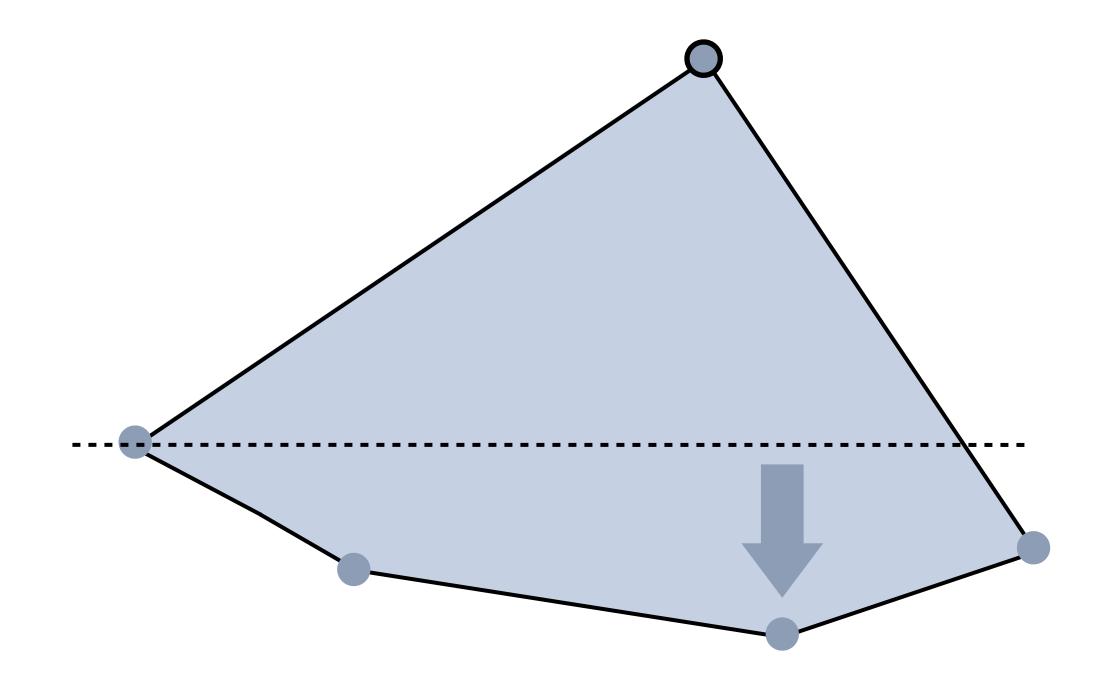
LP Algorithms.

•

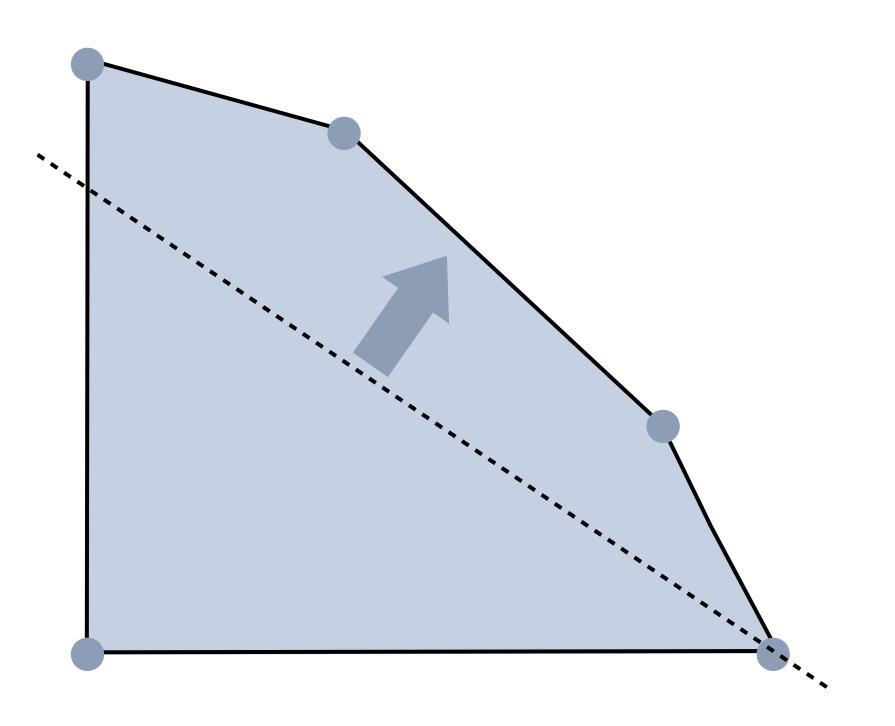
- Simplex Method. Search over basic feasible solutions.
- Ellipsoid Algorithm. Use geometric divide-and-conquer.

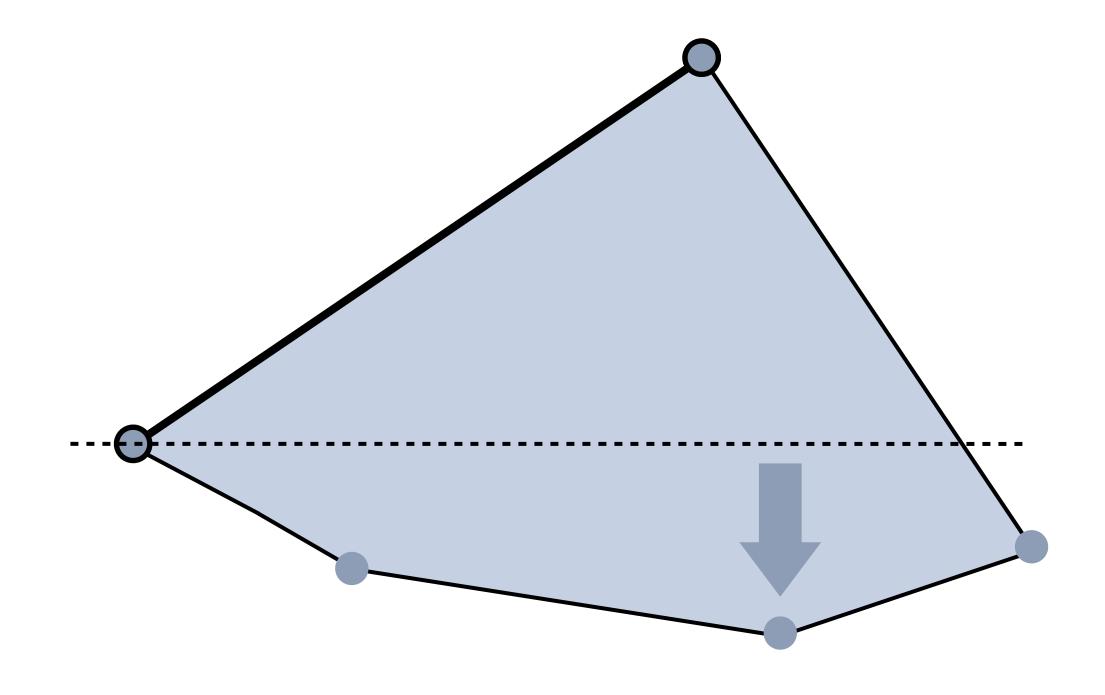
Input. Set of halfspaces ${\cal H}$ Output. Lowest vertex in the intersection of halfspaces in ${\cal H}$



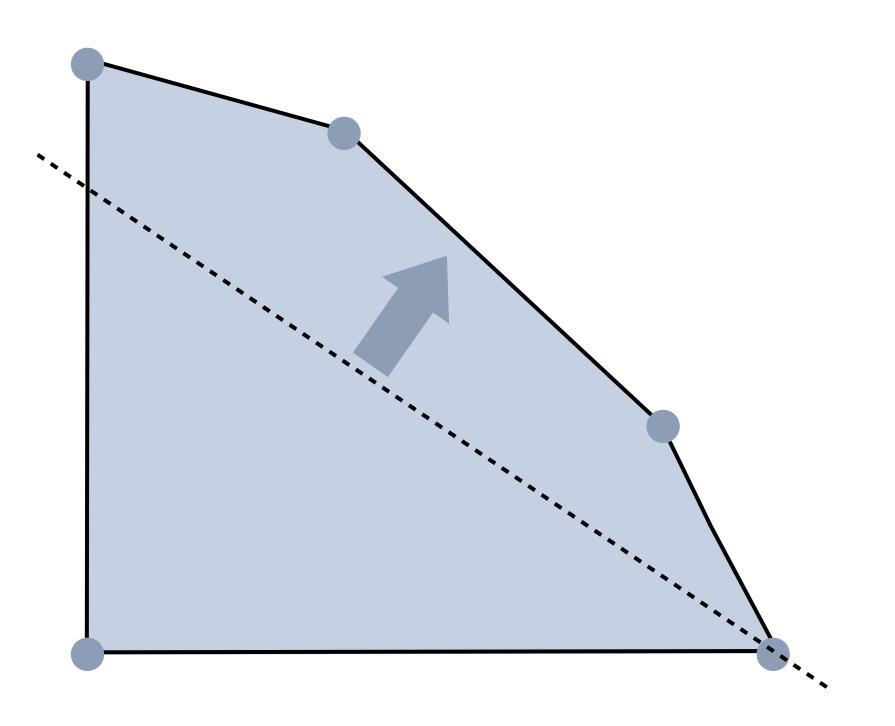


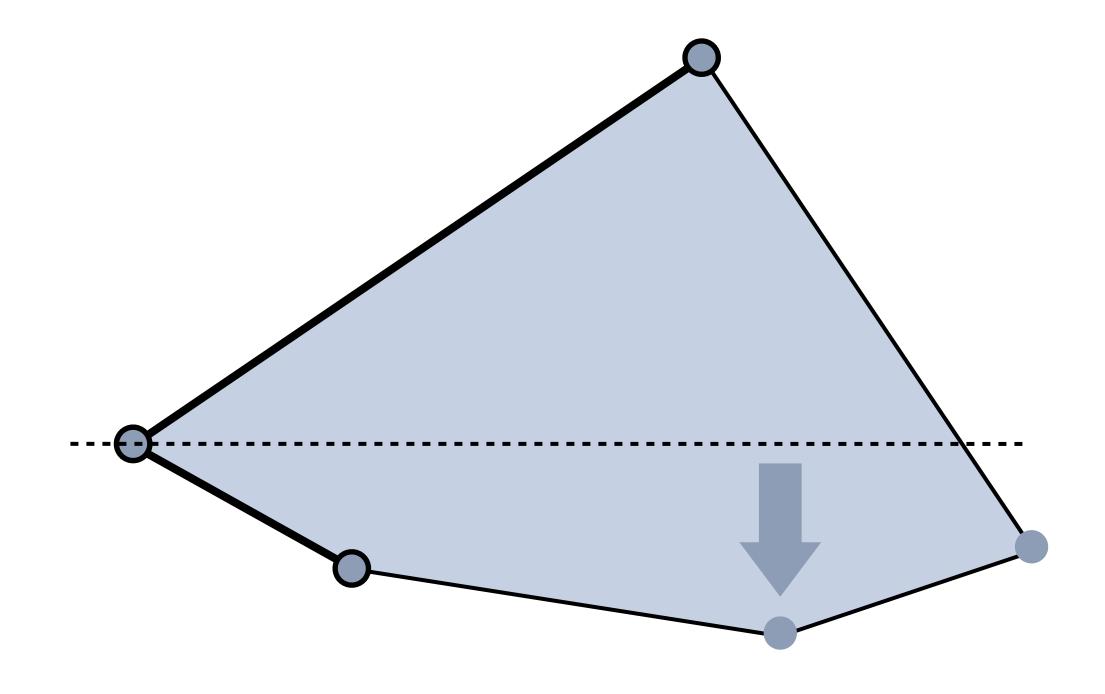
Input. Set of halfspaces ${\cal H}$ Output. Lowest vertex in the intersection of halfspaces in ${\cal H}$



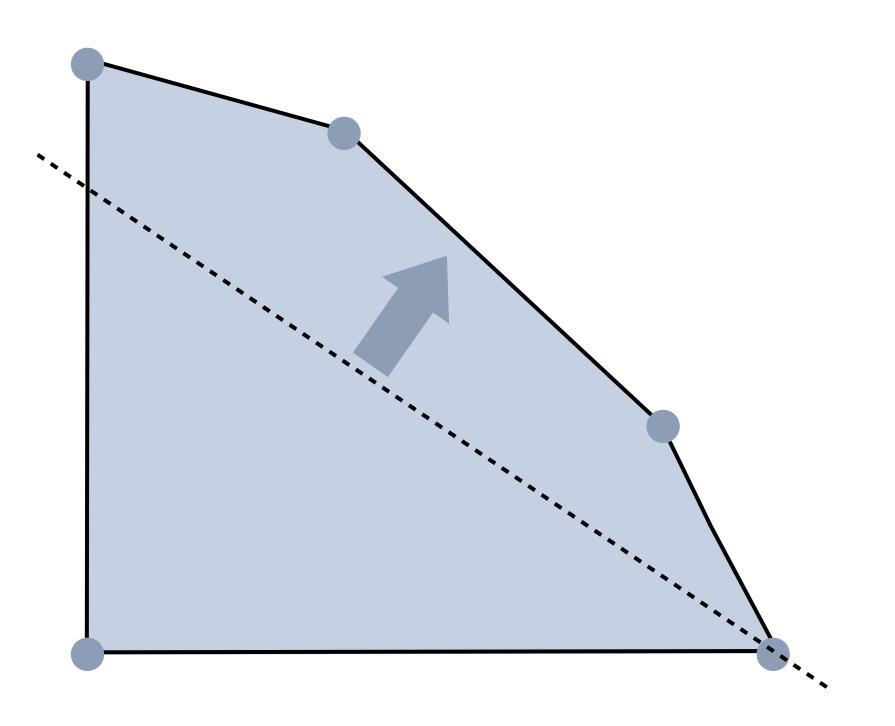


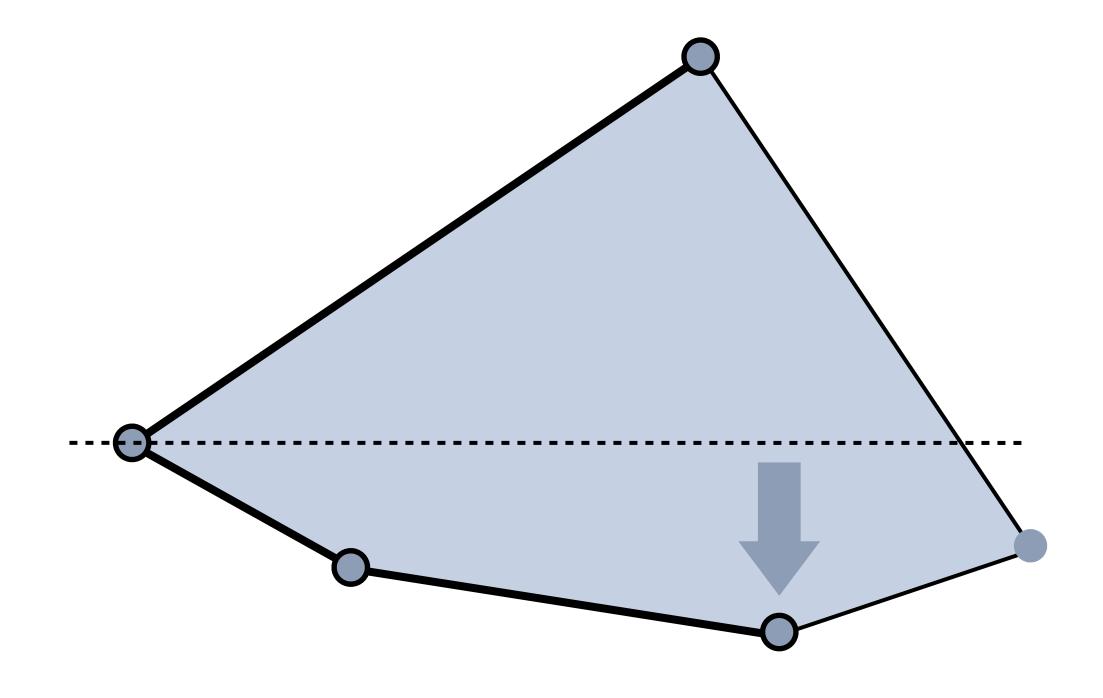
Input. Set of halfspaces ${\cal H}$ Output. Lowest vertex in the intersection of halfspaces in ${\cal H}$





Input. Set of halfspaces ${\cal H}$ Output. Lowest vertex in the intersection of halfspaces in ${\cal H}$

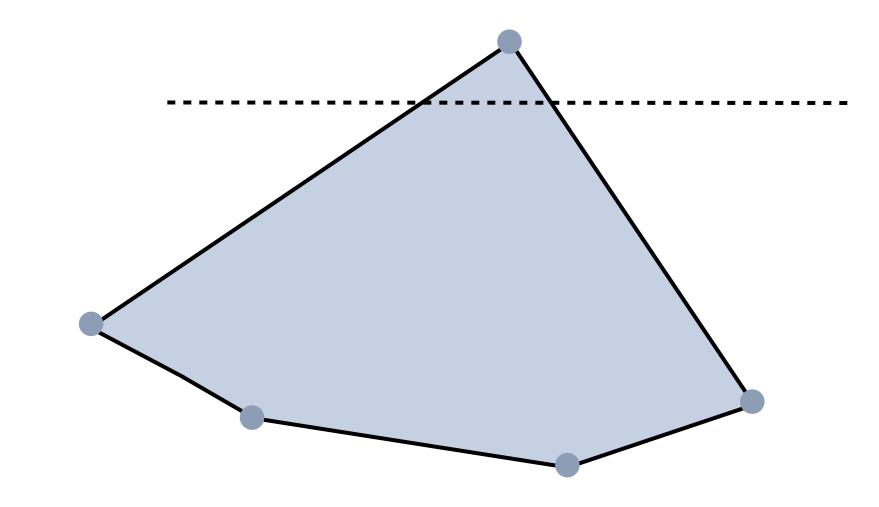




Basis. A basis is a subset of *n* linearly independent constraints and its location is the unique point x satisfying the all n constraints with equality.

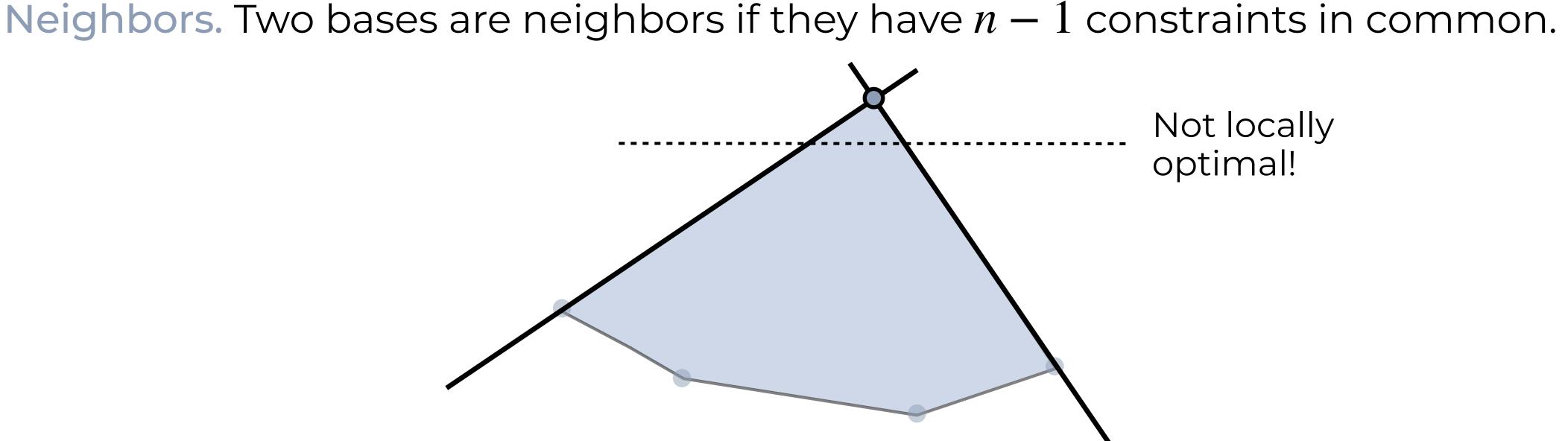
Locally Optimal Basis. A basis is locally optimal if its location x is the optimal solution to the LP with the same objective function and only the constraints in the basis.

Neighbors. Two bases are neighbors if they have n-1 constraints in common.



Basis. A basis is a subset of *n* linearly independent constraints and its location is the unique point x satisfying the all n constraints with equality.

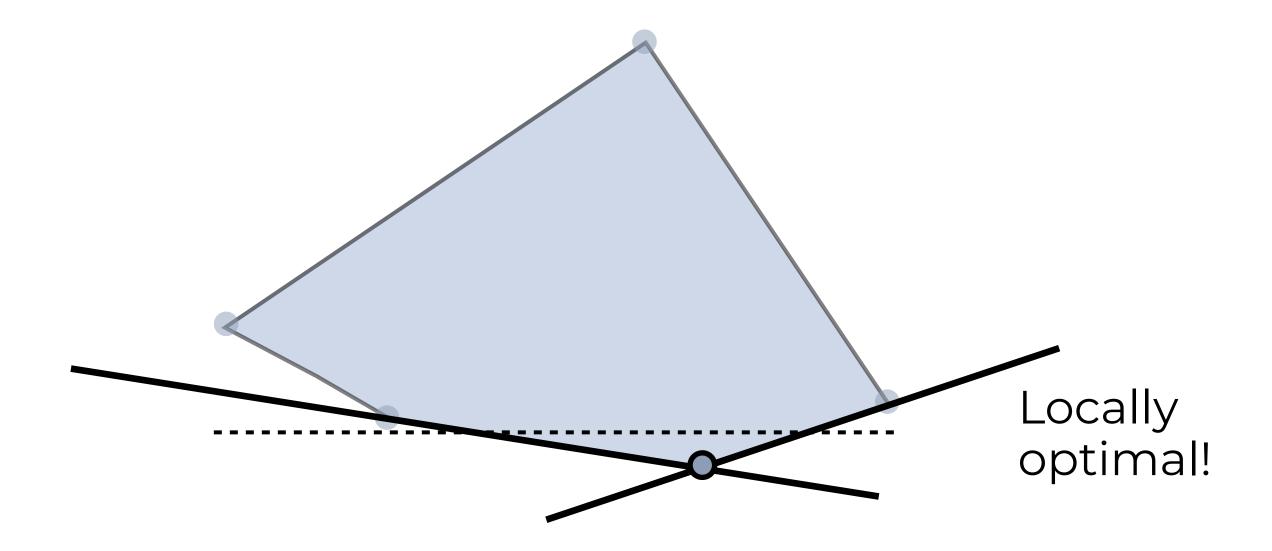
Locally Optimal Basis. A basis is locally optimal if its location x is the optimal solution to the LP with the same objective function and only the constraints in the basis.



Basis. A basis is a subset of *n* linearly independent constraints and its location is the unique point x satisfying the all n constraints with equality.

Locally Optimal Basis. A basis is locally optimal if its location x is the optimal solution to the LP with the same objective function and only the constraints in the basis.

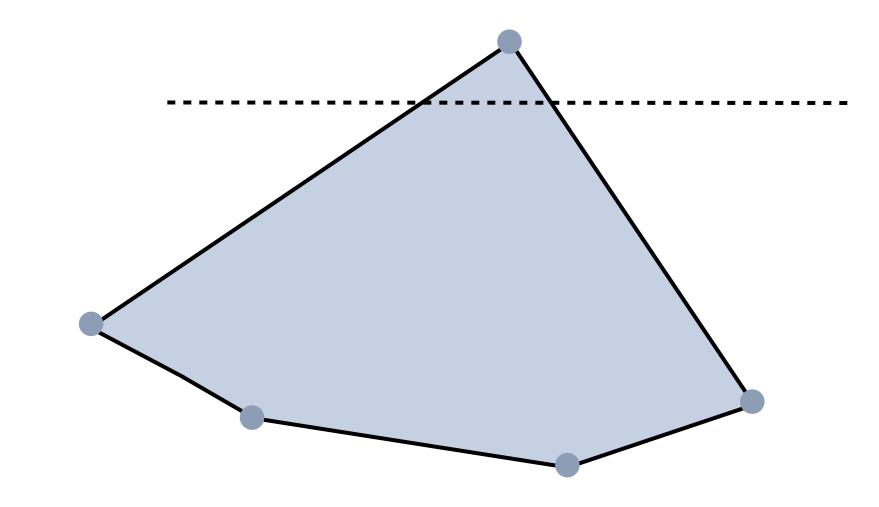
Neighbors. Two bases are neighbors if they have n-1 constraints in common.



Basis. A basis is a subset of *n* linearly independent constraints and its location is the unique point x satisfying the all n constraints with equality.

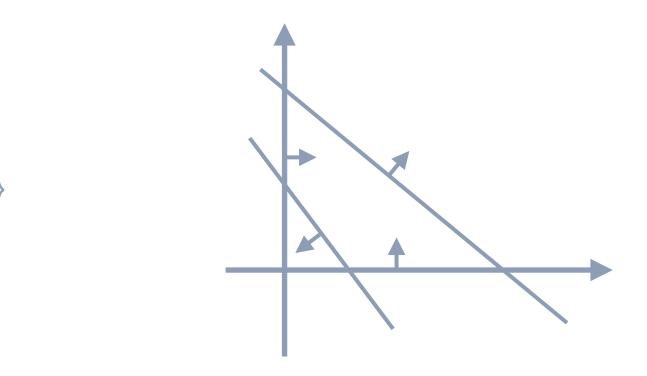
Locally Optimal Basis. A basis is locally optimal if its location x is the optimal solution to the LP with the same objective function and only the constraints in the basis.

Neighbors. Two bases are neighbors if they have n-1 constraints in common.

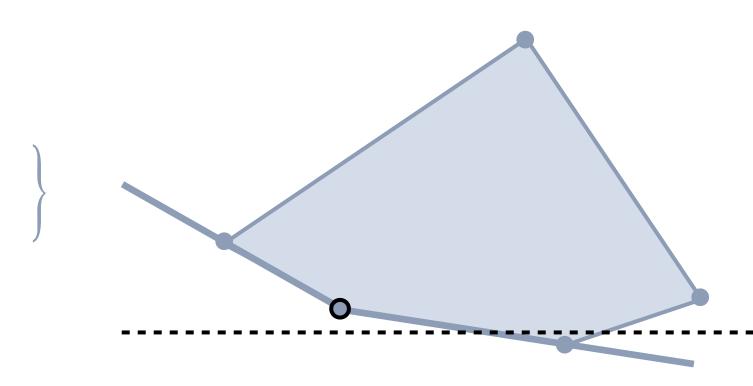


Simplex Algorithm(H). if $\cap H = \emptyset$ return INFEASIBLE $x \leftarrow$ any feasible vertex while x is not locally optimal: ((pivot downward, maintaining feasibility)) if every feasible neighbor of x is higher than x return UNBOUNDED else $x \leftarrow$ any feasible neighbor of that is lower than x

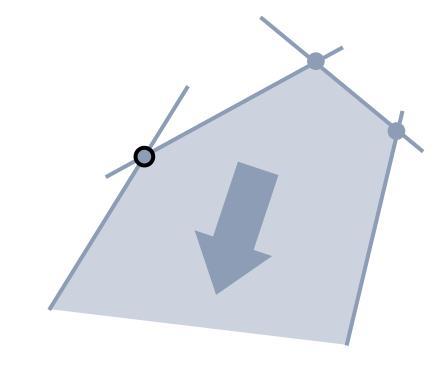
Simplex Algorithm(H). if $\cap H = \emptyset$ return INFEASIBLE $x \leftarrow$ any feasible vertex while x is not locally optimal: ((pivot downward, maintaining feasibility)) if every feasible neighbor of x is higher than x return UNBOUNDED else $x \leftarrow$ any feasible neighbor of that is lower than x



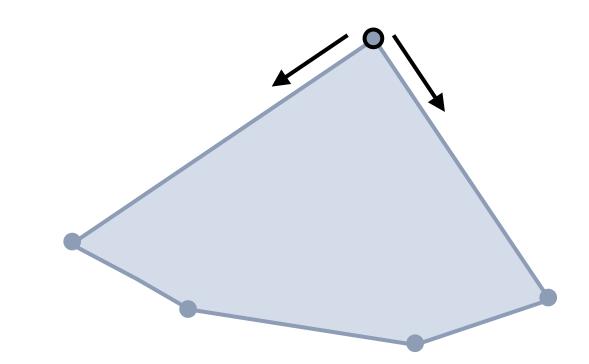
Simplex Algorithm(H). if $\cap H = \emptyset$ return INFEASIBLE $x \leftarrow$ any feasible vertex while x is not locally optimal: {pivot downward, maintaining feasibility} if every feasible neighbor of x is higher than x return UNBOUNDED else $x \leftarrow$ any feasible neighbor of that is lower than x



Simplex Algorithm(H). if $\cap H = \emptyset$ return INFEASIBLE $x \leftarrow$ any feasible vertex while x is not locally optimal: {pivot downward, maintaining feasibility} if every feasible neighbor of x is higher than x return UNBOUNDED else $x \leftarrow$ any feasible neighbor of that is lower than x



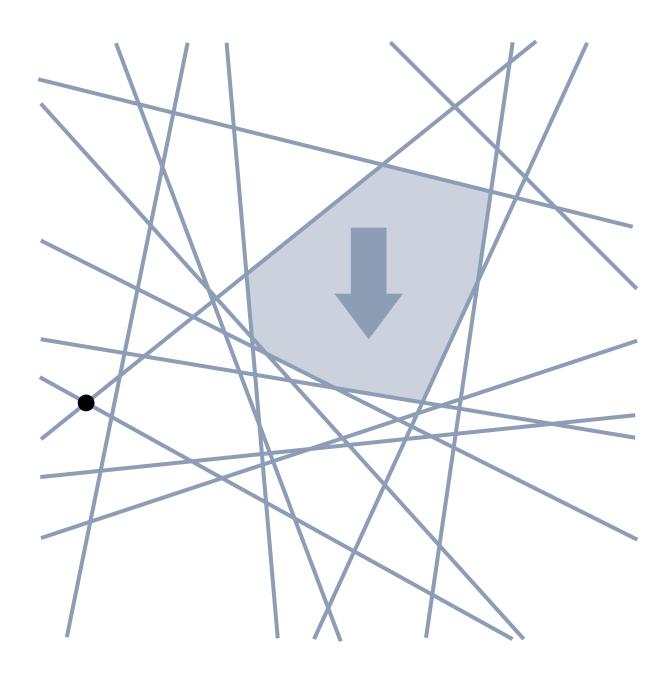
Simplex Algorithm(H). if $\cap H = \emptyset$ return INFEASIBLE $x \leftarrow$ any feasible vertex while x is not locally optimal: {pivot downward, maintaining feasibility} if every feasible neighbor of x is higher than x return UNBOUNDED else $x \leftarrow$ any feasible neighbor of that is lower than x



3 Simplex Method: Find Initial Solution

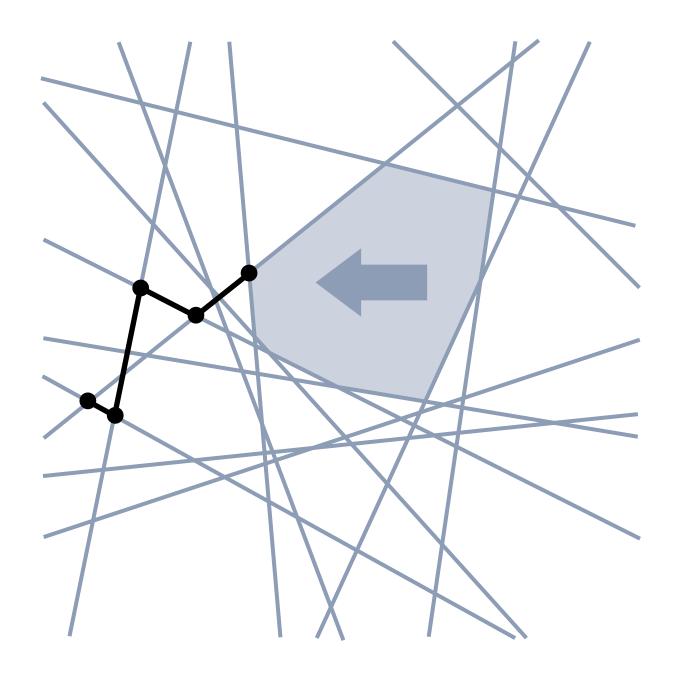
Observations.

- 7)
- 2) Every basis is locally optimal for some objective vector.



Choose any basis *x*.

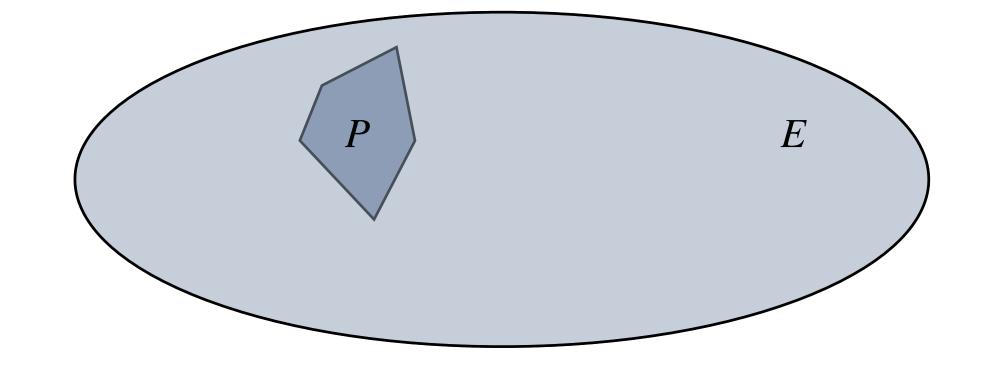
The feasibility of a vertex does not depend on choice of objective vector.



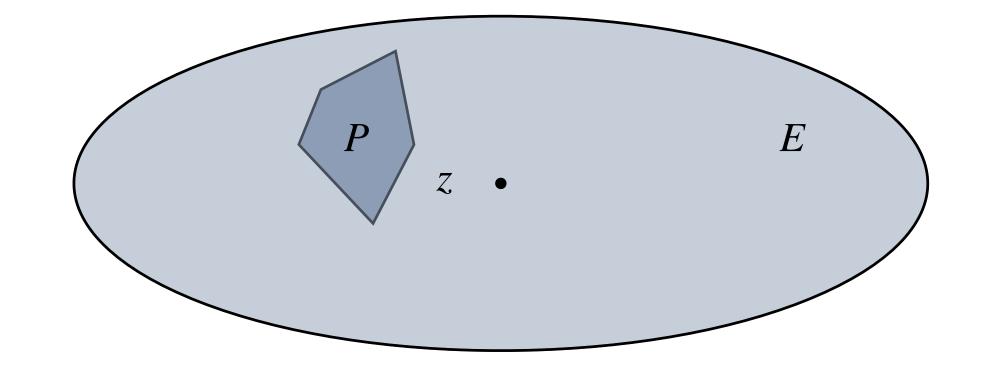
Rotate objective to make *x* feasible and pivot "up" to a feasible basis.

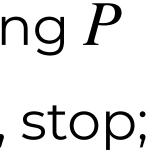


Maintain an ellipsoid E containing P•

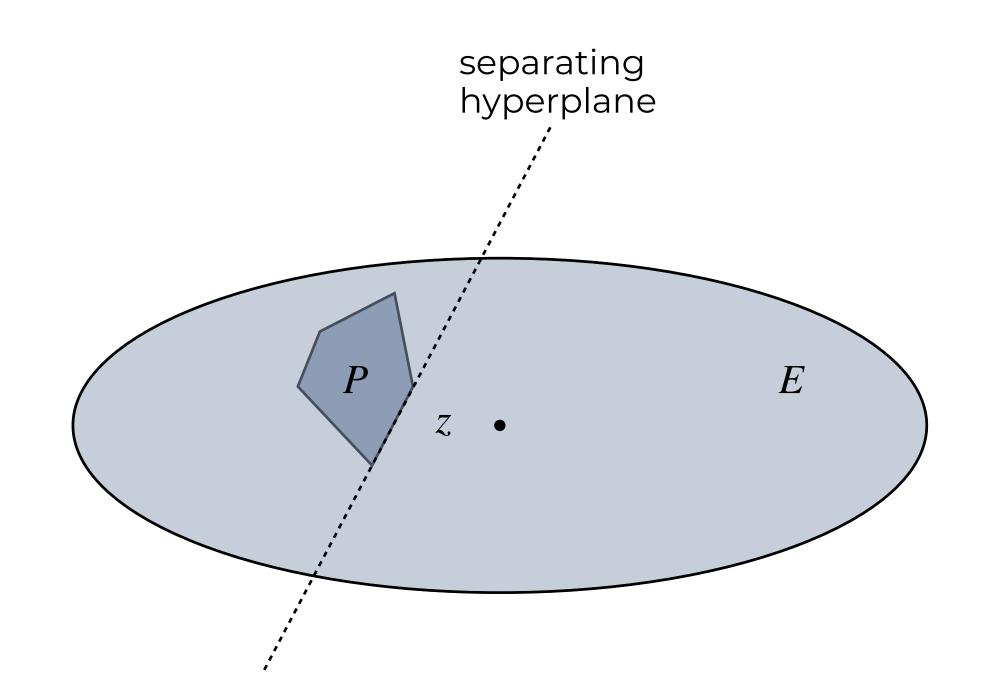


- Maintain an ellipsoid E containing P
- If the center z of ellipsoid is in P, stop;

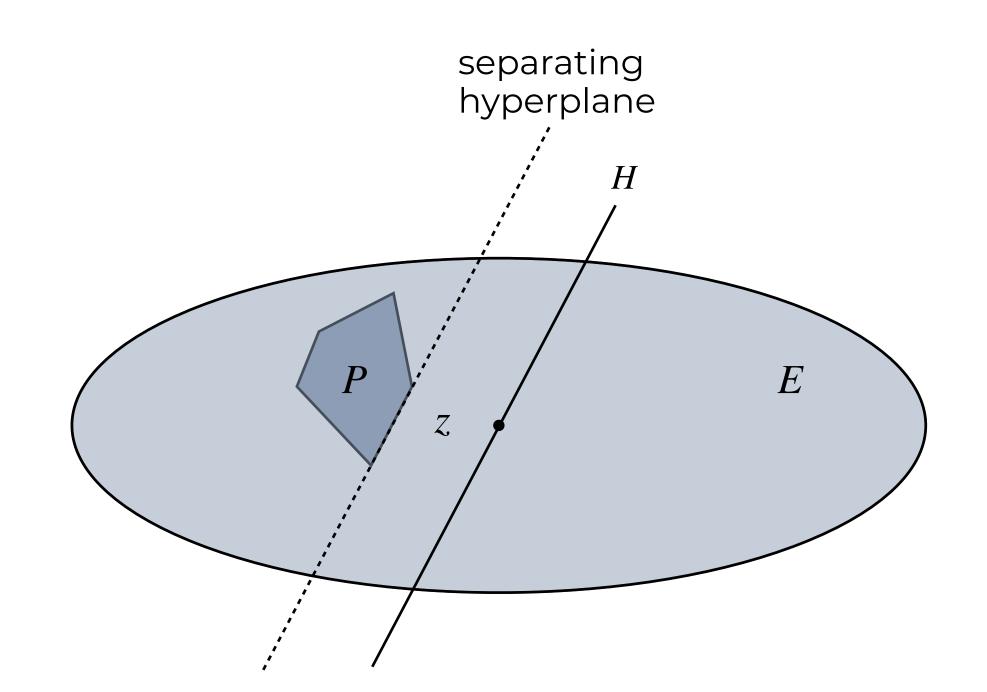




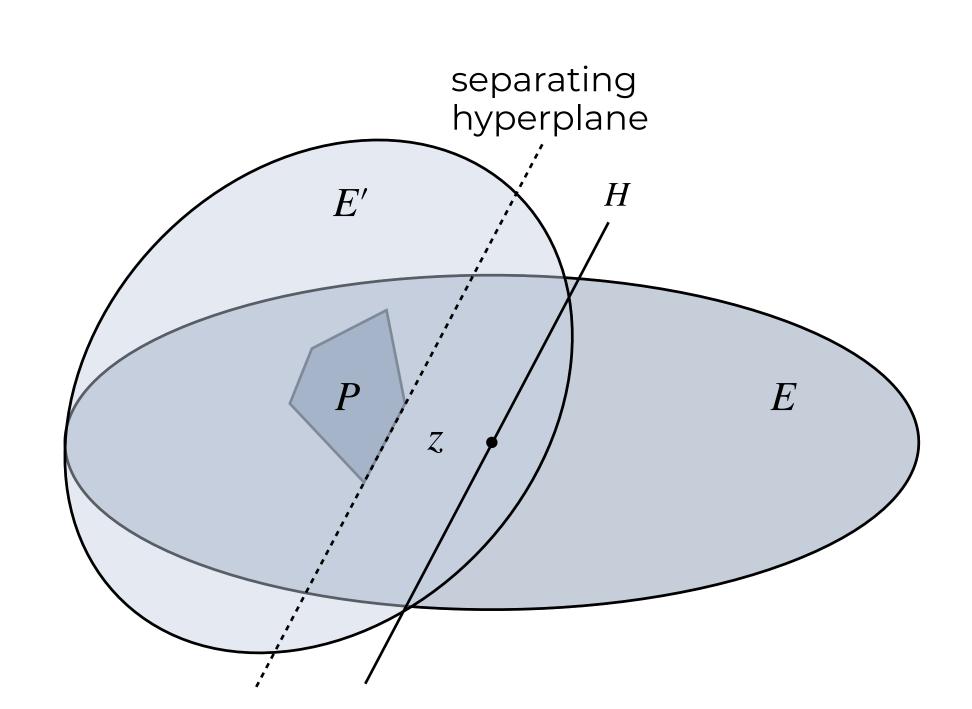
- Maintain an ellipsoid E containing P•
- If the center z of ellipsoid is in P, stop; • Otherwise find hyperplane separating *z* from *P*



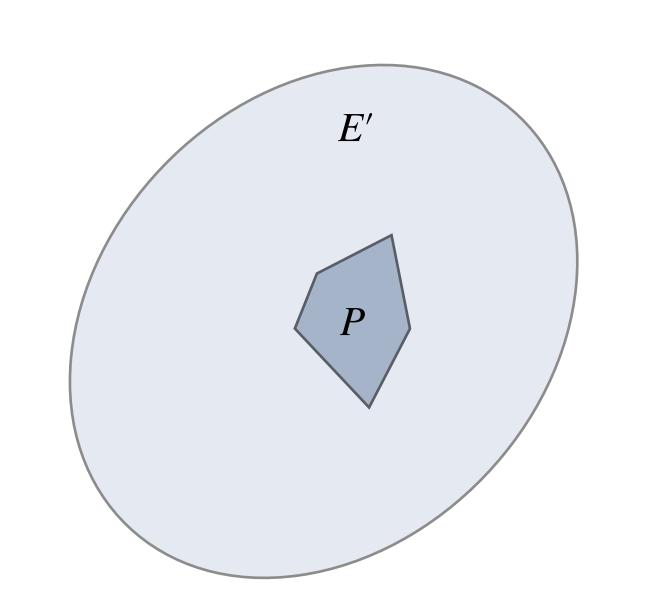
- Maintain an ellipsoid E containing P•
- If the center z of ellipsoid is in P, stop; • Otherwise find hyperplane separating *z* from *P*



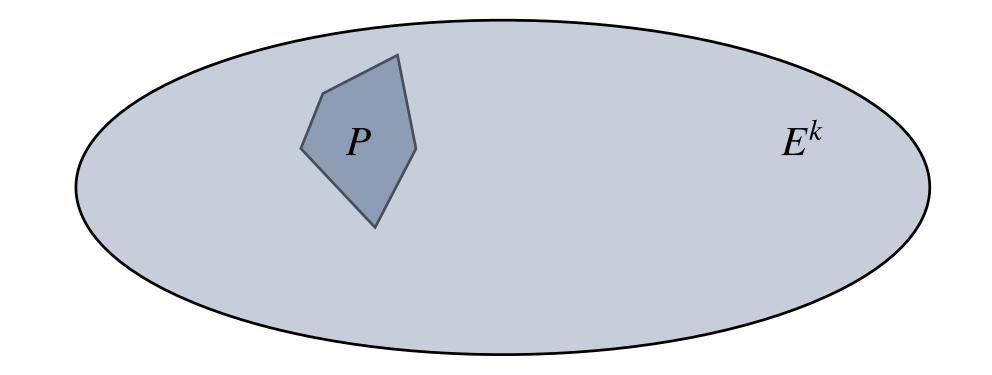
- Maintain an ellipsoid E containing P•
- If the center z of ellipsoid is in P, stop; • Otherwise find hyperplane separating z from P
- Find the smallest ellipsoid E' containing the half-ellipsoid •



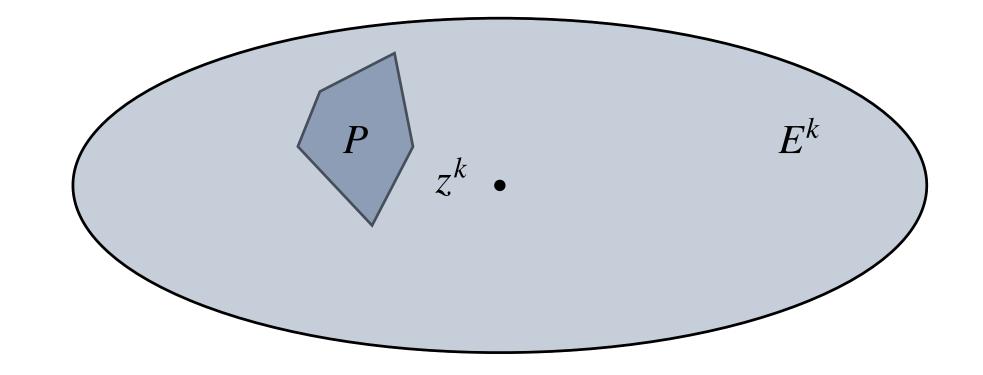
- Maintain an ellipsoid E containing P•
- If the center z of ellipsoid is in P, stop; • Otherwise find hyperplane separating z from P
- Find the smallest ellipsoid E' containing the half-ellipsoid •
- Repeat with same procedure with E'!•



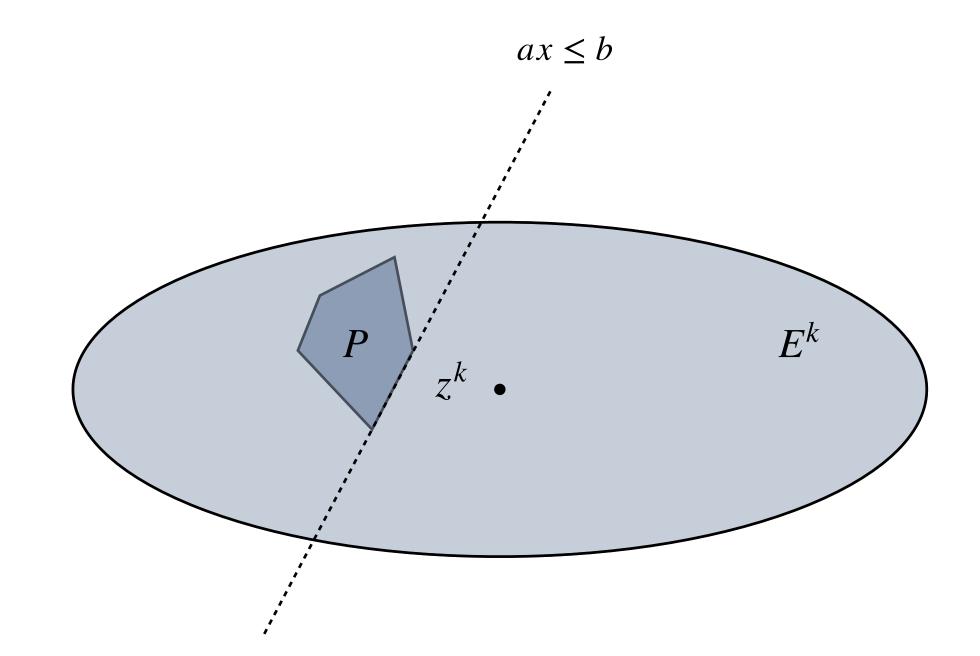
Ellipsoid Algorithm. Set k = 0 and let E^0 be an ellipsoid containing P.



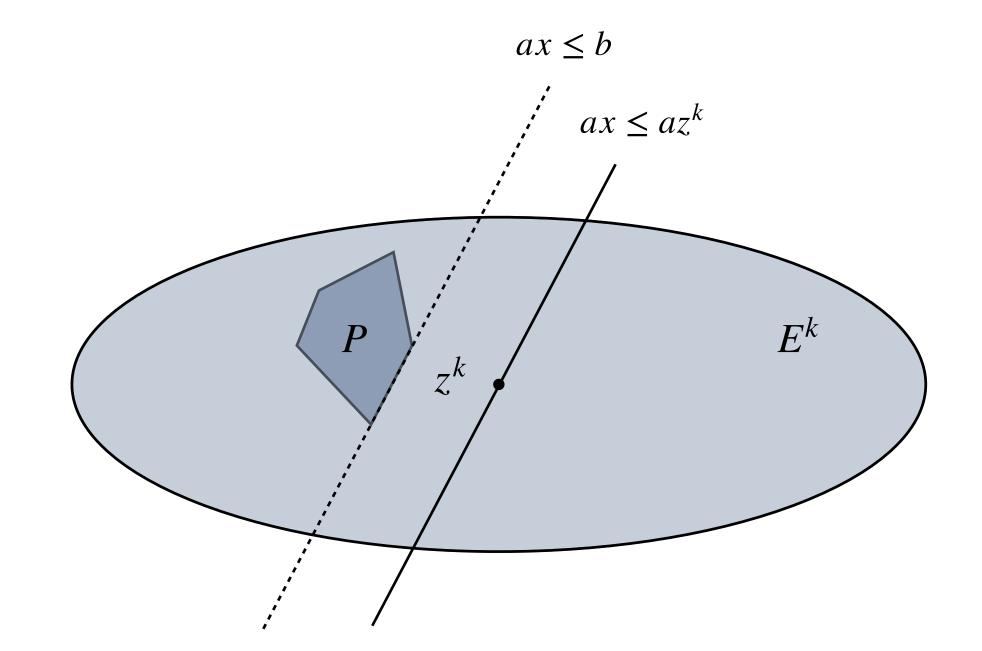
Ellipsoid Algorithm. Set k = 0 and let E^0 be an ellipsoid containing P. While center z^k of ellipsoid E^k is not in P:



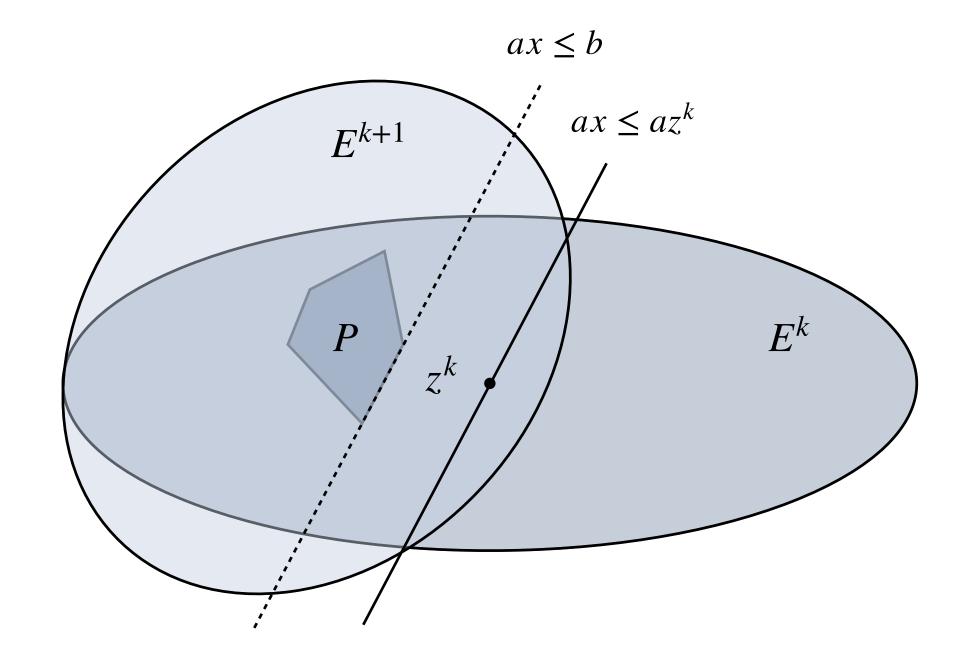
Ellipsoid Algorithm. Set k = 0 and let E^0 be an ellipsoid containing P. While center z^k of ellipsoid E^k is not in P: Find a constraint $ax \leq b$ that is violated by z^k .



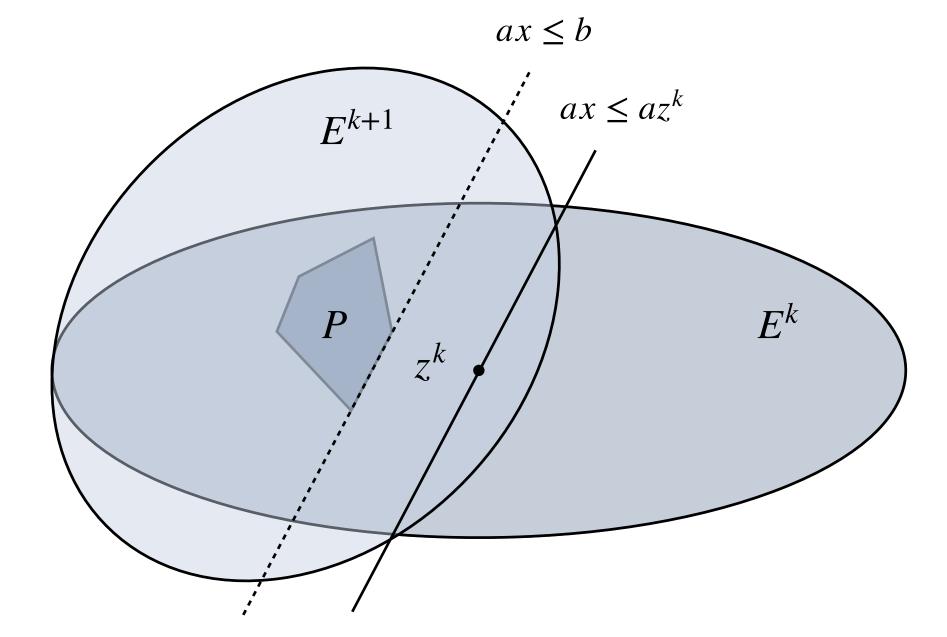
Ellipsoid Algorithm. Set k = 0 and let E^0 be an ellipsoid containing P. While center z^k of ellipsoid E^k is not in P: Find a constraint $ax \leq b$ that is violated by z^k .



Ellipsoid Algorithm. Set k = 0 and let E^0 be an ellipsoid containing P. While center z^k of ellipsoid E^k is not in P: Find a constraint $ax \leq b$ that is violated by z^k . Let E^{k+1} be minimum volume ellipsoid containing $E^k \cap \{x : ax \leq az^k\}$.



Ellipsoid Algorithm. Set k = 0 and let E^0 be an ellipsoid containing P. While center z^k of ellipsoid E^k is not in P: Find a constraint $ax \leq b$ that is violated by z^k . Let E^{k+1} be minimum volume ellipsoid containing $E^k \cap \{x : ax \leq az^k\}$. Set k = k + 1.



half-ellipsoid $\frac{1}{2}E^k$

