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@ Brewery Example: Lower Bound

How to find a lower bound on the optimal value y* of the Brewery L

max 13x; + 23x,

Sx; + 15x, <480
4x; + 4x, <160
35x; + 20x, <1190
A1 2 >0

Any feasible solution to the Brewery LP provides a lower bound.

(.xl,xZ) — (34,0) }/* Z 442
(xl,xZ) — (0,32) }/* Z 736
(X1, %) = (12,28) y* > 800
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@ Brewery Example: Upper Bound

s there a way to prove an upper bound on y*?

Multiply each of the constraints by a new non-negative scalar value y; .

max  13x; + 23x,

y; ( Sx; + 15x,) <480 vy,

v, (4x; + 4x,) <160 vy,

y3 (35x; + 20x,) < 1190y,
A1 A2 >0

Any feasible solution (x;, x,) must satisfy all the inequalities, so it must also
satisty their sum.

yl(le —+ 15X2) -+ y2(4x1 —+ 4X2) —+ y3(35x1 —+ 2OX2) S 480y1 —+ 160y2 —+ 1190y3



@ Brewery Example: Upper Bound

Suppose that the coefficient of each variable x; is larger than the corresponding
coefficient of the objective function.

x,(5y; + 4y, + 35y))  +  x,(15y, + 4y, + 20y,) < 480y, + 160y, + 1190y,

Oy; +4y, +35y3) 2 13, (15y; + 4y, + 20y;) > 23 (1)

This assumption implies an upper bound on the objective value of any feasible
solution.

13x; + 23x, < xSy, + 4y, + 35y3) + x,(15y; + 4y, + 20y3)
< 480y, + 160y, + 1190y; (2)



@ Brewery Example: Upper Bound

In particular, by plugging in the optimal solution (x;k,x;) for the original LP, the
following upper bound on y* can be obtained.

y* = 13x% + 23xF < 480y, + 160y, + 1190y,

How tight can this upper bound be? That Is, how small can the
expression 480y, + 160y, + 1190y, be without violating any of the inequalities (1)
used to prove the upper bound?

This can be expressed as another linear program!



@ Brewery Example: Upper Bound

What does this linear program look like?

It is a minimization problem that combines the expressions (1) and (2)
with non-negativity constraints for y;, ¥, and yj.

min 430y, + 160y, + 1190y,

)71, yZ’ y3 Z O

While the original Brewery LP has 2 variables and 3 constraints,
the above LP has 3 variables and 2 constraints.



@ Brewery Example: Economic Interpretation

Find optimal mix of beer and Buy Individual resources
ale to maximize profits. from the brewer to minimize costs.
max 13x; + 23x, min 4380y, + 160y, + 1190y;
Sx; + 15x, <480 Syi+ 4y, + 35y, > 13
4X1 + 4.X2 S 160 15)71 —+ 4y2 + 20y3 Z 23

35x; + 20x, <1190
X1 A2 > () Y1 Y25 y; 20



@ Primal and Dual LP

Every linear program, referred to as the primal problem, has a
corresponding dual problem, which provides an upper bound to the optimal
value of the primal problem.

max c’x min  y'b
Ax<b (P) (D) Aly > c



@ Primal and Dual LP

The dual of the dual of any linear program is always (equivalent to) the
original linear program.

min  y’b max —y'b min  —clx max c’x
Aly > ¢ ~Aly < —¢ —ADH x> -b Ax<bh
y=>0 y >0 x>0 x>0

Rewrite the dual as a maximization problem in canonical form and take the dual.
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@ Construct LP Dual

Given a primal (P) that is not in canonical form, the dual (D) can
be derived by converting (P) into canonical form and applying the rules below.

mMaximize mMminimize
ax = b, y; unrestricted
Constraints ax < bl. 7 > () Variables
ax 2 b, yi =0
> 0 Iy >
X; 2 a;y 2 ¢
Variables x <0 ajTy < ¢ Constraints
: T..
X; unrestricted ay = ¢



Linear
Programming I

Primal & Dual LP

Duality Theorems

(M)(I)LP Complexity




@ Solvability of Systems of Inequalities

The system Ax = b,x > 0 has no solution, if and only if there
exists ywith ATy > 0and b’y < 0.

Given a matrix A and a right-hand side b, one of the following two
systems Is feasible while the other one Is infeasible.

dx € R” dy € R"
(1) s.t. Ax = b, (2) s.t. ATy >0,
x>0 bly < 0
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@ Farkas Lemma: Example

Consider the solutions to two different systems for
4 4 S
A = and b = .
(1)

dx; + 4x, =5 x; =1
AL, X2 >0

(2)
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@ Farkas Lemma: Example

Drawing the constraints shows the feasibility and infeasibility of the
two systems.

X5 Y2
2
feasible infeasible 1
2 1 1 2 V1
1
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@ Solvability of Systems of Inequalities

The system Ax = b, x > (0 has no solution, if and only if there
exists ywith A’y > 0and b’y < 0.

The system Ax < b has no solution x € R”, if and
only if there exists y € R™ such thaty > 0, A’y =0and b’y < 0.

Both systems cannot have solution, since otherwise holds that

=vyib >yl Ax =0'x
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@ Weak Duality

If x is a feasible solution to (P) and y is a feasible solution to its
dual (D), then it holds that ¢’ x < bTy.

Since both x and y are feasible, it holds that Ax < b,x > 0and Aly > ¢,

y > 0. Hence it follows

17



@ Weak Duality

The Weak Duality Theorem has three important conseguences:
fclx = bTy, then x and y are optimal primal and dual solutions, respectively.

If a linear program is unbounded, then its dual Is infeasible.

If a linear program is feasible, then its dual iIs bounded.

Finite optimum Unbounded Infeasible

Finite optimum

Unbounded

INnfeasible

Possible Impossible



@ Duality Gap

Let x be a feasible solution to the primal (P) and y be a feasible
solution to the dual (D), then the duality gap is equal to ¢’ x — by and describes
the difference between the primal and dual solutions.

| |
442 776 370 1506

— Objective values Primal values Optimal value Dual values



@ Strong Duality

If x* is an optimal solution to (P), then there exists an optimal
solution y* for its dual (D) such that clx* = bTy*.

. Write a big system of inequalities in x and y such that
() xis primal feasible
(i)  yisdual feasible
(i) cfx>bly

. Use the Theorem of the Alternatives or Farkas Lemma to show that the

Infeasibility of this system of inequalities would contradict the feasibility of
either (P) or (D)
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@ Strong Duality

If x* is an optimal solution to (P), then there exists an optimal
solution y* for its dual (D) such that clx* = bTy*.

et x" be a feasible solution of (P) and y’ a feasible solution of (D).

By contradiction, suppose that there are no solutionsx € R"andy € R™
with ¢l x > bTy, hence the following system is infeasible.

VAN VAN

|
o
o
_|_
S
Uy
IA
-
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@ Strong Duality

Using the Theorem of the Alternatives, there must exist s € R", r € R",
ueR™ veRwiths,u,v>0andz! =(s,t,u,v) such that
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@ Strong Duality

Combining the system &1z = 0 with (b")! z < 0 yields the following
system of (in-)equalities

Als — cv =0
—At —u+by =0
bls — clt <0

INn order to show that this system contradicts the feasibility of either (P) or
(D), there are two different cases depending on the value of v.
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@ Strong Duality

Casel.:v > 0
By dividing the equations by v and renaming all the variables, there exist
s’ u' > 0with s’ = %s, 1 = %t, u' = %u such that

Als’ = C
—At' —u' =->
bls' — !t <0

This means that s’ is dual feasible and ¢’ is primal feasible, therefore it
holds by weak duality that ¢’ < b’s’ contradicting b's’ < ¢!t
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@ Strong Duality

Case2:v =1(

Then s satisfies s > 0 and A's = 0, meaning forany a > 0, ¥’ + as is dual
feasible. Similarly, —At = u > 0 and therefore, forany a > 0, x" + at is primal
feasible. By weak duality, this means that, for any a > 0, it holds that

cl(x'+ ar) < b1y + as)

clx' = by < abls -l

The right-hand side tends to —o0 as a tends to 00, which is a contradiction
as the left-hand side is fixed.
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@ Complementary Slackness

If x is a feasible solution to (P) and y is a feasible
solution to its dual (D), then x and y are optimal solutions to (P) and (D)
respectively, if and only if either y, = 0 or Zj a;x; = b; (or both) for all 7.

Revisiting the eguation in the weak duality proof shows the slack
between a feasible and an optimal solution.

clx <yl'Ax < bly
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@ Complementary Slackness

Given an optimal solution x* to (P), complementary slackness
allows to compute an optimal solution to (D) from x*, instead of solving the dual

using an LP algorithm.

. Solve (D.) to obtain an optimal solution y* & Réo

io to (Px) from y* & R%o using

. Compute an optimal solution x* € R
complementary slackness

max (13 23 2 l)T-x min (6 8)T° y
2 6 13
2 3 4 5 6 3 7 23
P. - x < -y 2 2
(F2) (6789) x‘<8> Y IR Y
59 1

4 2
x € R y € R3,
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’ Scheduling Example: ILP

ILP
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’ Airline Example: MILP

Business Class

ILP

A e me(nl-l-nz) <

Economy Class

LP
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@ Different Program Formulations

A = Zm)(n, A = Ran
be 7", b e R",
ce /7", c € R",
X E Z’;O X E R’;O

A e me(n1+n2)

be 7",

ce 7", de 7™,

ny ny
X E ZZO, y E Rzo



3 (M)(1)LP Complexity

NP-hard
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@ LP Relaxation

Given a (mixed) integer linear program, the LP which arises by

dropping the integrality constraint of each variable is called its L

D relaxation.

This technigue transforms an NP-hard optimization problem into a

related problem solvable in polynomial time.

2 opt. fractional
3 solution
maX X2 -----------------------------------
opt. integral
solutions
_xl + XZ Sl 9) g :
2x;, + 3x, <12 1 M SR SR
0 | I y
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3 (M)ILP Algorithms

Integral
points

Objective

“~._ function
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0 Sparse Constraint Matrices: n-fold

8-10

10 - 12

12 -14

14 -16

16 - 18

Mon Tue Wed Thu Fri
Lecture 1
Lecture 1
Lecture 2
Lecture 2 Lecture 1
Lecture 3
Lecture 2
Lecture 3
Lecture 3

Assign time slots
Fill time slot groups

Restrict early,
lunch, late slots

Restrict same-day
slots

Consider professor
constraints

Consider room
constraints
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0 Sparse Constraint Matrices: n-fold

8-10

10 - 12

12 -14

14 -16

16 - 18

Mon Tue Wed Thu Fri
- Lecture 2 Lecture 3
Lecture 3
Lecture 2 Lecture 3 -
Lecture 2

Assign time slots
Fill time slot groups

Restrict early,
lunch, late slots

Restrict same-day
slots

Consider professor
constraints

Consider room
constraints
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@ Sparse Constraint Matrices: two-stage

All-

Palrs Shortest Paths

Network Flow

Amortized Analysis

Randomized Algorithms

Hardness

Computability

Linear Programming

Approximation Algorithms
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0 Sparse Constraint Matrices: two-stage

Hardness

Computability
Linear Programming

Approximation Algorithms
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0 Sparse Constraint Matrices: two-stage

Hardness

Computability
Linear Programming

Approximation Algorithms

Plan

'
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0 Sparse Constraint Matrices: two-stage

Hardness

Computability
Linear Programming

Approximation Algorithms

Plan Reality

SR
|
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0 Sparse Constraint Matrices: two-stage

All-Pairs Shortest Paths
Network Flow

Amortized Analysis

Randomized Algorithms

Plan Reality
--
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0 Sparse Constraint Matrices: two-stage
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0 Sparse Constraint Matrices: two-stage

Plan Reality
--

T

Decision
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0 Sparse Constraint Matrices: two-stage
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0 Sparse Constraint Matrices: two-stage
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Plfn Reility
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Decision How it applies to each scenario
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