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Brewery Example: Lower Bound1

Question. How to find a lower bound on the optimal value  of the Brewery LP?γ*

≤ 480
≤ 160
≤ 1190
≥ 0

max 13x1 +

5x1 +
4x1 +

35x1 +
x1,

23x2

15x2

4x2

20x2
x2

Answer. Any feasible solution to the Brewery LP provides a lower bound.

(x1, x2) = (34,0)
(x1, x2) = (0,32)
(x1, x2) = (12,28)

γ* ≥ 442
γ* ≥ 736
γ* ≥ 800

⇒
⇒
⇒

3



Brewery Example: Upper Bound1

Question. Is there a way to prove an upper bound on ?γ*

Answer. Multiply each of the constraints by a new non-negative scalar value  .yi

23x2

15x2)
4x2)

20x2)
x2

max

y1 (
y2 (
y3 (

13x1 +

5x1 +
4x1 +

35x1 +
x1,

y1

y2

y3

≤ 480
≤ 160
≤ 1190
≥ 0

Any feasible solution  must satisfy all the inequalities, so it must also 
satisfy their sum.

(x1, x2)

y1(5x1 + 15x2) + y2(4x1 + 4x2) + y3(35x1 + 20x2) ≤ 480y1 + 160y2 + 1190y3
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Brewery Example: Upper Bound1

Suppose that the coefficient of each variable  is larger than the corresponding 
coefficient of the objective function.

xi

(5y1 + 4y2 + 35y3) ≥ 13,

x1(5y1 + 4y2 + 35y3) + x2(15y1 + 4y2 + 20y3) ≤ 480y1 + 160y2 + 1190y3

(15y1 + 4y2 + 20y3) ≥ 23

This assumption implies an upper bound on the objective value of any feasible 
solution.

⟹ ⟹

(1)

(2)
13x1 + 23x2 ≤ x1(5y1 + 4y2 + 35y3) + x2(15y1 + 4y2 + 20y3)

≤ 480y1 + 160y2 + 1190y3

5



Brewery Example: Upper Bound1

Question. How tight can this upper bound be? That is, how small can the 
expression  be without violating any of the inequalities 
used to prove the upper bound?

480y1 + 160y2 + 1190y3 (1)

Answer. This can be expressed as another linear program!

In particular, by plugging in the optimal solution  for the original LP, the 
following upper bound on  can be obtained.

(x*1 , x*2 )
γ*

γ* = 13x*1 + 23x*2 ≤ 480y1 + 160y2 + 1190y3

6



Brewery Example: Upper Bound1

≥ 13
≥ 23
≥ 0

1190y3

35y3

20y3
y3

160y2 +

4y2 +
4y2 +
y2,

min 480y1 +

5y1 +
15y1 +

y1,

Question. What does this linear program look like?

Answer. It is a minimization problem that combines the expressions  and  
with non-negativity constraints for  and .

(1) (2)
y1, y2 y3

Observation. While the original Brewery LP has  variables and  constraints, 
the above LP has  variables and  constraints.

2 3
3 2
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Brewery Example: Economic Interpretation1

≤ 480
≤ 160
≤ 1190
≥ 0

max 13x1 +

5x1 +
4x1 +

35x1 +
x1,

23x2

15x2

4x2

20x2
x2

≥ 13
≥ 23

≥ 0

1190y3

35y3

20y3

y3

160y2 +

4y2 +
4y2 +

y2,

min 480y1 +

5y1 +
15y1 +

y1,

Brewer. Find optimal mix of beer and 
ale to maximize profits.

Entrepreneur. Buy individual resources 
from the brewer to minimize costs.

Primal Problem Dual Problem

8



Primal and Dual LP1

min yTb
ATy ≥ c

y ≥ 0
(D)

max cTx
A x ≤ b

x ≥ 0
(P)

Primal Problem Dual Problem

Dual Problem. Every linear program, referred to as the primal problem, has a 
corresponding dual problem, which provides an upper bound to the optimal 
value of the primal problem.

9



Primal and Dual LP1

Lemma. The dual of the dual of any linear program is always (equivalent to) the 
original linear program.

Rewrite the dual as a maximization problem in canonical form and take the dual. 

max −yTb
−ATy ≤ − c

y ≥ 0

min − cTx
−(AT)T x ≥ − b

x ≥ 0

min yTb
ATy ≥ c

y ≥ 0

max cTx
A x ≤ b

x ≥ 0
⟺ ⟹ ⟺

dual of (D)(D) (P)max form of (D)

dualize

10



Construct LP Dual1

Primal (P) maximize minimize Dual (D)

Constraints  
 Variables

Variables Constraints
 
 

αT
j y ≥ cj

αT
j y ≤ cj

αT
j y = cj

 
 

 unrestricted

xj ≥ 0
xj ≤ 0
xj

 
 

aix = bi
aix ≤ bi
aix ≥ bi

 unrestricted 
 

yi
yi ≥ 0
yi ≤ 0

Construction. Given a primal  that is not in canonical form, the dual  can 
be derived by converting  into canonical form and applying the rules below.

(P) (D)
(P)

(P) (D)

Notation:  refers to the -th row of  and  to the -th column of .ai i A αj j A
11
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Solvability of Systems of Inequalities2

Farkas Lemma. The system  has no solution, if and only if there 
exists  with  and .

Ax = b, x ≥ 0
y ATy ≥ 0 bTy < 0

Simply Put. Given a matrix  and a right-hand side , one of the following two 
systems is feasible while the other one is infeasible.

A b

∃x ∈ ℝn

s . t . Ax = b,
x ≥ 0

(1)

∃y ∈ ℝm

s . t . ATy ≥ 0,
bTy < 0

(2)

13



Farkas Lemma: Example2

Example. Consider the solutions to two different systems for

= 5
= 3
≥ 0

4x2

x2

4x1 +
3x1
x1,

⇒
x1 = 1

x2 =
1
4

A = ( 4 4
3 0) b = (5

3) .and

(1) (2)

≥ 0
≥ 0
< 0

3y2

3y2

4y1 +
4y1

5y1 +
⇒

≥ 0
≥ 0
< 0

3y2

3y2

4y1 +
y1

5y1 + ⏟> − 5y1

14



Farkas Lemma: Example2

Example. Drawing the constraints shows the feasibility and infeasibility of the 
two systems. 

≥ 0
≥ 0
< 0

3y2

3y2

4y1 +
4y1

5y1 +

= 5
= 3
≥ 0

4x2

x2

4x1 +
3x1
x1,

x2

x11 22 1

2

1

1

2

feasible

1 22 1

2

1

1

2

infeasible

y2

y1

15



Solvability of Systems of Inequalities2

Farkas Lemma. The system  has no solution, if and only if there 
exists  with  and .

Ax = b, x ≥ 0
y ATy ≥ 0 bTy < 0

Theorem of the Alternatives. The system  has no solution , if and 
only if there exists  such that  and .

Ax ≤ b x ∈ ℝn

y ∈ ℝm y ≥ 0, ATy = 0 bTy < 0

Proof. [partly] Both systems cannot have solution, since otherwise holds that

0 > bTy = yTb ≥ yT Ax = 0Tx = 0.0 > bTy ≥ = 0

16



Weak Duality2

Weak Duality. If  is a feasible solution to  and  is a feasible solution to its 
dual , then it holds that .

x (P) y
(D) cTx ≤ bTy

Proof. Since both  and  are feasible, it holds that  and 
. Hence it follows

x y Ax ≤ b, x ≥ 0 ATy ≥ c,
y ≥ 0

cTx ≤ (ATy)Tx = yT Ax ≤ bTy .

17



Weak Duality2

Implications. The Weak Duality Theorem has three important consequences: 

• If , then  and  are optimal primal and dual solutions, respectively. 

• If a linear program is unbounded, then its dual is infeasible. 

• If a linear program is feasible, then its dual is bounded.

cTx = bTy x y

Possible Impossible

Finite optimum Unbounded Infeasible

 Finite optimum  
 

 Unbounded

 Infeasible

Dual (D)

Primal (P)

18



Duality Gap2

Duality Gap. Let  be a feasible solution to the primal  and  be a feasible 
solution to the dual , then the duality gap is equal to  and describes 
the difference between the primal and dual solutions.

x (P) y
(D) cTx − bTy

442

736

776

800

870

1180

1506

Primal values Dual valuesOptimal valueObjective values

19



Strong Duality2

Proof Game Plan. 
  • Write a big system of inequalities in  and  such that 

(i)  is primal feasible 

(ii)  is dual feasible 

(iii)   

• Use the Theorem of the Alternatives or Farkas Lemma to show that the 
infeasibility of this system of inequalities would contradict the feasibility of 
either  or 

x y
x
y
cTx ≥ bTy

(P) (D)

Strong Duality. If  is an optimal solution to , then there exists an optimal 
solution  for its dual  such that .

x* (P)
y* (D) cTx* = bTy*

20



Strong Duality2

Strong Duality. If  is an optimal solution to , then there exists an optimal 
solution  for its dual  such that .

x* (P)
y* (D) cTx* = bTy*

Proof. 

Ax

−cTx +

≤ b
≤ − c
≤ 0
≤ 0

−ATy
−Iy
bTy

} s
} t
} u
} v

y ≥ 0
cTx ≥ bTy

primal 

dual

Let  be a feasible solution of  and  a feasible solution of .  
By contradiction, suppose that there are no solutions  and  
with , hence the following system is infeasible.

x′ (P) y′ (D)
x ∈ ℝn y ∈ ℝm

cTx ≥ bTy

21



Strong Duality2

Proof. Using the Theorem of the Alternatives, there must exist 
 with  and  such that

s ∈ ℝm, t ∈ ℝn,
u ∈ ℝm, v ∈ ℝ s, u, v ≥ 0 zT = (s, t, u, v)

( A 0 0 −c
0 −A −I b ) ⋅

s
t
u
v

= (0
0)

𝒜T ⏟z

⟹

A 0
0 −AT

0 −I
−cT bT

⋅ (x
y) ≤

b
−c
0
0

𝒜 ⏟
b′ 

22



Strong Duality2

ATs − cv = 0
At − u + bv = 0

bTs + cTt < 0

−At −
cTt

u +
cv
bv

ATs −

bTs −

= 0
= 0
< 0

Proof. 

In order to show that this system contradicts the feasibility of either  or 
, there are two different cases depending on the value of .

(P)
(D) v

Combining the system  with  yields the following 
system of (in-)equalities

𝒜Tz = 0 (b′ )Tz < 0

23



Strong Duality2ATs − cv = 0
At − u + bv = 0

bTs + cTt < 0
Proof. Case 1:   

By dividing the equations by  and renaming all the variables, there exist 
 with   such that

v > 0
v

s′ , u′ ≥ 0 s′ = 1
v s, t′ = 1

v t, u′ = 1
v u

−At′ −
cTt′ 

= c
= − b
< 0

u′ 

ATs′ 

bTs′ −

s′ = 1
v s,

t′ = 1
v t, u′ = 1

v u

This means that  is dual feasible and  is primal feasible, therefore it 
holds by weak duality that  contradicting .

s′ t′ 

cTt′ ≤ bTs′ bTs′ < cTt′ 

24



Strong Duality2

ATs − cv = 0
At − u + bv = 0

bTs + cTt < 0

Proof. Case 2:   
Then  satisfies  and , meaning for any ,   is dual 
feasible. Similarly,  and therefore, for any ,  is primal 
feasible. By weak duality, this means that, for any , it holds that

v = 0
s s ≥ 0 ATs = 0 α ≥ 0 y′ + αs

−At = u ≥ 0 α ≥ 0 x′ + αt
α ≥ 0

The right-hand side tends to  as  tends to , which is a contradiction 
as the left-hand side is fixed.

−∞ α ∞

cT(x′ + αt) ≤ bT(y′ + αs)

cTx′ − bTy′ ≤ α(bTs − cTt)

⟺

25



Complementary Slackness2

Complementary Slackness. If  is a feasible solution to  and  is a feasible 
solution to its dual , then  and  are optimal solutions to  and  
respectively, if and only if either  or  (or both) for all .

x (P) y
(D) x y (P) (D)

yi = 0 ∑j aijxj = bi i

Observation 1. Revisiting the equation in the weak duality proof shows the slack 
between a feasible and an optimal solution.

cTx ≤ yT Ax ≤ bTy

ATy ≥ c
dual

primal
Ax ≤ b

26



Complementary Slackness2

Observation 2. Given an optimal solution  to , complementary slackness 
allows to compute an optimal solution to  from , instead of solving the dual 
using an LP algorithm.

x* (P)
(D) x*

y ∈ ℝ2
≥0

2 6
3 7
4 8
5 9

⋅ y ≥

13
23
2
1

min (6 8)T⋅ y

(D*)(2 3 4 5
6 7 8 9) ⋅ x ≤ (6

8)

max (13 23 2 1)T ⋅ x

x ∈ ℝ4
≥0

(P*)

Example. 

• Solve  to obtain an optimal solution  

• Compute an optimal solution  to  from  using 
complementary slackness

(D*) y* ∈ ℝ2
≥0

x* ∈ ℝ4
≥0 (P*) y* ∈ ℝ2

≥0

27
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Scheduling Example: ILP3

max cTx

Ax = b

x ∈ ℤn
≥0

b ∈ ℤm
⏟

A ∈ ℤm×n ⏟

ILP
29



Airline Example: MILP

Business Class Economy Class

MILP

ILP ILP

A ∈ ℤm×(n1+n2) A1 A2 ⋅ (x
y) = b

max cTx + dTy

x ∈ ℤn1
≥0 y ∈ ℝn2

≥0

b ∈ ℤm
⏟

3

30



Different Program Formulations3

ILP ILP

MILP

A ∈ ℤm×n,
b ∈ ℤm,
c ∈ ℤn,
x ∈ ℤn

≥0

A ∈ ℝm×n,
b ∈ ℝm,
c ∈ ℝn,
x ∈ ℝn

≥0

A ∈ ℤm×(n1+n2)

b ∈ ℤm,
c ∈ ℤn1, d ∈ ℤn2,
x ∈ ℤn1

≥0, y ∈ ℝn2
≥0 31



(M)(I)LP Complexity3

ILP

MILP

LP

NP

P

NP-hard

32



LP Relaxation3

−x1 +
3x1 +
2x1 +
x1,

x2 ≤ 1
2x2 ≤ 12
3x2 ≤ 12
x2 ∈ ℤ2

≥0 ⇒ ℝ2
≥0

max x2

x2

x11 2 3 40

1

2

3
opt. fractional 

solution

LP Relaxation. Given a (mixed) integer linear program, the LP which arises by 
dropping the integrality constraint of each variable is called its LP relaxation.

Observation. This technique transforms an NP-hard optimization problem into a 
related problem solvable in polynomial time.

opt. integral 
solutions

33



(M)ILP Algorithms3

Branch and Bound Cutting Plane Method

Cutting  
planes 

Objective 
function

Integral 
points

Opt. fractional 
solution

Opt. integral 
solution

Fathomed 
nodes

LP relaxations

34



Sparse Constraint Matrices: n-fold3

Mon Tue Wed Thu Fri

8 - 10 Lecture 1

10 - 12 Lecture 1  
Lecture 2

12 - 14 Lecture 2
Lecture 1  
Lecture 3

14 - 16 Lecture 2  
Lecture 3

16 - 18 Lecture 3

A

Assign time slots 
Fill time slot groups

Restrict early, 
lunch, late slots

Consider professor  
constraints

Restrict same-day 
slots

Consider room 
constraints
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Sparse Constraint Matrices: n-fold3

Mon Tue Wed Thu Fri

8 - 10

10 - 12

12 - 14

14 - 16

16 - 18

A

Assign time slots 
Fill time slot groups

Restrict early, 
lunch, late slots

Restrict same-day 
slots

Consider professor  
constraints

Consider room 
constraints
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Sparse Constraint Matrices: n-fold3

Mon Tue Wed Thu Fri

8 - 10 Lecture 1 Lecture 2 Lecture 3

10 - 12 Lecture 3

12 - 14 Lecture 2 Lecture 3 Lecture 1

14 - 16 Lecture 1 Lecture 2

16 - 18

A

Assign time slots 
Fill time slot groups

Restrict early, 
lunch, late slots

Restrict same-day 
slots

Consider professor  
constraints

Consider room 
constraints
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Sparse Constraint Matrices: two-stage3

All-Pairs Shortest Paths 

Network Flow  

Amortized Analysis 

Randomized Algorithms 

Hardness 

Computability 

Linear Programming 

Approximation Algorithms
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Sparse Constraint Matrices: two-stage3

All-Pairs Shortest Paths 

Network Flow  

Amortized Analysis 

Randomized Algorithms 

Hardness 

Computability 

Linear Programming 

Approximation Algorithms
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Sparse Constraint Matrices: two-stage3

Plan

All-Pairs Shortest Paths 

Network Flow  

Amortized Analysis 

Randomized Algorithms 

Hardness 

Computability 

Linear Programming 

Approximation Algorithms
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Sparse Constraint Matrices: two-stage3

Plan Reality

All-Pairs Shortest Paths 

Network Flow  

Amortized Analysis 

Randomized Algorithms 

Hardness 

Computability 

Linear Programming 

Approximation Algorithms
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Sparse Constraint Matrices: two-stage3

Plan Reality

All-Pairs Shortest Paths 

Network Flow  

Amortized Analysis 

Randomized Algorithms 

Hardness 

Computability 

Linear Programming 

Approximation Algorithms
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Sparse Constraint Matrices: two-stage3

Plan Reality

All-Pairs Shortest Paths 

Network Flow  

Amortized Analysis 

Randomized Algorithms 

Hardness 

Computability 

Linear Programming 

Approximation Algorithms
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Sparse Constraint Matrices: two-stage3

Plan Reality

All-Pairs Shortest Paths 

Network Flow  

Amortized Analysis 

Randomized Algorithms 

Hardness 

Computability 

Linear Programming 

Approximation Algorithms
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Sparse Constraint Matrices: two-stage3

Decision

Plan Reality

All-Pairs Shortest Paths 

Network Flow  

Amortized Analysis 

Randomized Algorithms 

Hardness 

Computability 

Linear Programming 

Approximation Algorithms
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Sparse Constraint Matrices: two-stage3

Decision

Plan Reality

How it applies to each scenario

All-Pairs Shortest Paths 

Network Flow  

Amortized Analysis 

Randomized Algorithms 

Hardness 

Computability 

Linear Programming 

Approximation Algorithms
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Sparse Constraint Matrices: two-stage3

Decision How it applies to each scenario

A

Plan Reality

All-Pairs Shortest Paths 

Network Flow  

Amortized Analysis 

Randomized Algorithms 

Hardness 

Computability 

Linear Programming 

Approximation Algorithms
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