Linear Programming II

Primal \& Dual LP

Duality Theorems
(M)(I)LP Complexity

1 Brewery Example: Lower Bound

Question. How to find a lower bound on the optimal value γ^{*} of the Brewery LP?

$$
\begin{aligned}
\max & \begin{aligned}
13 x_{1}+23 x_{2} & \\
5 x_{1}+15 x_{2} & \leq 480 \\
4 x_{1}+4 x_{2} & \leq 160 \\
35 x_{1}+20 x_{2} & \leq 1190 \\
x_{1}, \quad x_{2} & \geq 0
\end{aligned},=\text { m }
\end{aligned}
$$

Answer. Any feasible solution to the Brewery LP provides a lower bound.

$$
\begin{array}{lll}
\left(x_{1}, x_{2}\right)=(34,0) & \Rightarrow & \gamma^{*} \geq 442 \\
\left(x_{1}, x_{2}\right)=(0,32) & \Rightarrow & \gamma^{*} \geq 736 \\
\left(x_{1}, x_{2}\right)=(12,28) & \Rightarrow & \gamma^{*} \geq 800
\end{array}
$$

1 Brewery Example: Upper Bound

Question. Is there a way to prove an upper bound on γ^{*} ?
Answer. Multiply each of the constraints by a new non-negative scalar value y_{i}.

$$
\begin{aligned}
\max & 13 x_{1}+23 x_{2} \\
y_{1}\left(5 x_{1}+15 x_{2}\right) & \leq 480 \quad y_{1} \\
y_{2}\left(4 x_{1}+4 x_{2}\right) & \leq 160 y_{2} \\
y_{3}\left(35 x_{1}+20 x_{2}\right) & \leq 1190 y_{3} \\
x_{1}, \quad x_{2} & \geq 0
\end{aligned}
$$

Any feasible solution (x_{1}, x_{2}) must satisfy all the inequalities, so it must also satisfy their sum.

$$
y_{1}\left(5 x_{1}+15 x_{2}\right)+y_{2}\left(4 x_{1}+4 x_{2}\right)+y_{3}\left(35 x_{1}+20 x_{2}\right) \leq 480 y_{1}+160 y_{2}+1190 y_{3}
$$

1. Brewery Example: Upper Bound

Suppose that the coefficient of each variable x_{i} is larger than the corresponding coefficient of the objective function.

$$
x_{1}\left(5 y_{1}+4 y_{2}+35 y_{3}\right)+x_{2}\left(15 y_{1}+4 y_{2}+20 y_{3}\right) \leq 480 y_{1}+160 y_{2}+1190 y_{3}
$$

$$
\begin{equation*}
\left(5 y_{1}+4 y_{2}+35 y_{3}\right) \geq 13, \quad\left(15 y_{1}+4 y_{2}+20 y_{3}\right) \geq 23 \tag{1}
\end{equation*}
$$

This assumption implies an upper bound on the objective value of any feasible solution.

$$
\begin{align*}
13 x_{1}+23 x_{2} & \leq x_{1}\left(5 y_{1}+4 y_{2}+35 y_{3}\right)+x_{2}\left(15 y_{1}+4 y_{2}+20 y_{3}\right) \\
& \leq 480 y_{1}+160 y_{2}+1190 y_{3} \tag{2}
\end{align*}
$$

1. Brewery Example: Upper Bound

In particular, by plugging in the optimal solution $\left(x_{1}^{*}, x_{2}^{*}\right)$ for the original LP, the following upper bound on γ^{*} can be obtained.

$$
\gamma^{*}=13 x_{1}^{*}+23 x_{2}^{*} \leq 480 y_{1}+160 y_{2}+1190 y_{3}
$$

Question. How tight can this upper bound be? That is, how small can the expression $480 y_{1}+160 y_{2}+1190 y_{3}$ be without violating any of the inequalities (1) used to prove the upper bound?

Answer. This can be expressed as another linear program!

1. Brewery Example: Upper Bound

Question. What does this linear program look like?
Answer. It is a minimization problem that combines the expressions (1) and (2) with non-negativity constraints for y_{1}, y_{2} and y_{3}.

$$
\begin{array}{rlrl}
\min 480 y_{1} & +160 y_{2}+1190 y_{3} & \\
5 y_{1}+4 y_{2}+35 y_{3} & \geq 13 \\
15 y_{1}+4 y_{2}+20 y_{3} & \geq 23 \\
y_{1}, & y_{2}, & y_{3} & \geq 0
\end{array}
$$

Observation. While the original Brewery LP has 2 variables and 3 constraints, the above LP has 3 variables and 2 constraints.

1. Brewery Example: Economic Interpretation

Brewer. Find optimal mix of beer and ale to maximize profits.
Primal Problem

$$
\begin{aligned}
& \max 13 x_{1}+23 x_{2} \\
& 5 x_{1}+15 x_{2} \leq 480 \\
& 4 x_{1}+4 x_{2} \leq 160 \\
& 35 x_{1}+20 x_{2} \leq 1190 \\
& x_{1}, \quad x_{2} \geq 0
\end{aligned}
$$

Entrepreneur. Buy individual resources from the brewer to minimize costs.

$$
\begin{aligned}
& \min 480 y_{1}+160 y_{2}+1190 y_{3} \\
& 5 y_{1}+4 y_{2}+35 y_{3} \geq 13 \\
& 15 y_{1}+4 y_{2}+20 y_{3} \geq 23 \\
& y_{1}, \quad y_{2}, \quad y_{3} \geq 0 \\
& \text { Dual Problem }
\end{aligned}
$$

1. Primal and Dual LP

Dual Problem. Every linear program, referred to as the primal problem, has a corresponding dual problem, which provides an upper bound to the optimal value of the primal problem.

$$
\begin{aligned}
\max c^{T} x & \\
A x & \leq b \\
x & \geq 0
\end{aligned}
$$

$$
\min \quad y^{T} b
$$

$$
A^{T} y \geq c
$$

$$
y \geq 0
$$

Primal Problem
Dual Problem

1. Primal and Dual LP

Lemma. The dual of the dual of any linear program is always (equivalent to) the original linear program.

$$
\begin{aligned}
& \text { (D) }
\end{aligned}
$$

Rewrite the dual as a maximization problem in canonical form and take the dual.

1. Construct LP Dual

Construction. Given a primal (P) that is not in canonical form, the dual (D) can be derived by converting (P) into canonical form and applying the rules below.

Primal (P)	maximize		minimize	Dual (D)
Constraints	$a_{i} x=b_{i}$		y_{i} unrestricted	
	$a_{i} x \leq b_{i}$		$y_{i} \geq 0$	Variables
	$a_{i} x \geq b_{i}$		$y_{i} \leq 0$	
	$x_{j} \geq 0$		$\alpha_{j}^{T} y \geq c_{j}$	
	$x_{j} \leq 0$		$\alpha_{j}^{T} y \leq c_{j}$	Constraints
	x_{j} unrestricted	$\alpha_{j}^{T} y=c_{j}$		

Linear Programming II

Primal \& Dual LP
Duality Theorems
(M)(I)LP Complexity

2. Solvability of Systems of Inequalities

Farkas Lemma. The system $A x=b, x \geq 0$ has no solution, if and only if there exists y with $A^{T} y \geq 0$ and $b^{T} y<0$.

Simply Put. Given a matrix A and a right-hand side b, one of the following two systems is feasible while the other one is infeasible.
$\exists x \in \mathbb{R}^{n}$
(1)

$$
\begin{align*}
\text { s.t. } A x & =b, \tag{2}\\
x & \geq 0
\end{align*}
$$

$$
\exists y \in \mathbb{R}^{m}
$$

$$
\begin{aligned}
\text { s.t. } A^{T} y & \geq 0 \\
b^{T} y & <0
\end{aligned}
$$

2. Farkas Lemma: Example

Example. Consider the solutions to two different systems for

$$
A=\left(\begin{array}{ll}
4 & 4 \\
3 & 0
\end{array}\right) \text { and } b=\binom{5}{3} .
$$

(1)

$$
\left.\begin{array}{rl}
4 x_{1}+4 x_{2} & =5 \\
3 x_{1} & =3 \\
x_{1}, & x_{2}
\end{array}\right) \quad \Rightarrow \quad \begin{aligned}
& x_{1}=1 \\
& x_{2}
\end{aligned}=\frac{1}{4}
$$

$$
\begin{aligned}
4 y_{1}+3 y_{2} & \geq 0 \\
4 y_{1} & \geq 0 \\
5 y_{1}+3 y_{2} & <0
\end{aligned} \Rightarrow \begin{aligned}
4 y_{1}+3 y_{2} & \geq 0 \\
y_{1} & \geq 0 \\
5 y_{1}+3 y_{2} & <0
\end{aligned}
$$

2 Farkas Lemma: Example

Example. Drawing the constraints shows the feasibility and infeasibility of the two systems.

2. Solvability of Systems of Inequalities

Farkas Lemma. The system $A x=b, x \geq 0$ has no solution, if and only if there exists y with $A^{T} y \geq 0$ and $b^{T} y<0$.

Theorem of the Alternatives. The system $A x \leq b$ has no solution $x \in \mathbb{R}^{n}$, if and only if there exists $y \in \mathbb{R}^{m}$ such that $y \geq 0, A^{T} y=0$ and $b^{T} y<0$.

Proof. [partly] Both systems cannot have solution, since otherwise holds that

$$
0>b^{T} y=y^{T} b \geq y^{T} A x=0^{T} x=0 .
$$

2. Weak Duality

Weak Duality. If x is a feasible solution to (P) and y is a feasible solution to its dual (D), then it holds that $c^{T} x \leq b^{T} y$.

Proof. Since both x and y are feasible, it holds that $A x \leq b, x \geq 0$ and $A^{T} y \geq c$, $y \geq 0$. Hence it follows

$$
c^{T} x \leq\left(A^{T} y\right)^{T} x=y^{T} A x \leq b^{T} y .
$$

2. Weak Duality

Implications. The Weak Duality Theorem has three important consequences:

- If $c^{T} x=b^{T} y$, then x and y are optimal primal and dual solutions, respectively.
- If a linear program is unbounded, then its dual is infeasible.
- If a linear program is feasible, then its dual is bounded.

Dual (D)

		Finite optimum	Unbounded	Infeasible
Primal (P)	Finite optimum	0	\bigcirc	\bigcirc
	Unbounded	8	8	0
	Infeasible	8	0	0

\checkmark Possible \& Impossible

2. Duality Gap

Duality Gap. Let x be a feasible solution to the primal (P) and y be a feasible solution to the dual (D), then the duality gap is equal to $c^{T} x-b^{T} y$ and describes the difference between the primal and dual solutions.

- Objective values
- Primal values
* Optimal value
- Dual values

2. Strong Duality

Strong Duality. If x^{*} is an optimal solution to (P), then there exists an optimal solution y^{*} for its dual (D) such that $c^{T} x^{*}=b^{T} y^{*}$.

Proof Game Plan.

- Write a big system of inequalities in x and y such that
(i) x is primal feasible
(ii) y is dual feasible
(iii) $c^{T} x \geq b^{T} y$
- Use the Theorem of the Alternatives or Farkas Lemma to show that the infeasibility of this system of inequalities would contradict the feasibility of either (P) or (D)

2. Strong Duality

Strong Duality. If x^{*} is an optimal solution to (P), then there exists an optimal solution y^{*} for its dual (D) such that $c^{T} x^{*}=b^{T} y^{*}$.

Proof. Let x^{\prime} be a feasible solution of (P) and y^{\prime} a feasible solution of (D). By contradiction, suppose that there are no solutions $x \in \mathbb{R}^{n}$ and $y \in \mathbb{R}^{m}$ with $c^{T} x \geq b^{T} y$, hence the following system is infeasible.

primal	$A x$	$\leq b$	$\} s$
dual	$-A^{T} y$	$\leq-c$	$\} t$
$y \geq 0$	$-I y$	≤ 0	$\} u$
$c^{T} x \geq b^{T} y$	$-c^{T} x+b^{T} y$	≤ 0	$\} v$

2. Strong Duality

Proof. Using the Theorem of the Alternatives, there must exist $s \in \mathbb{R}^{m}, t \in \mathbb{R}^{n}$, $u \in \mathbb{R}^{m}, v \in \mathbb{R}$ with $s, u, v \geq 0$ and $z^{T}=(s, t, u, v)$ such that

$$
\underbrace{\left(\begin{array}{cc}
A & 0 \\
0 & -A^{T} \\
0 & -I \\
-c^{T} & b^{T}
\end{array}\right)}_{\mathscr{A}} \cdot\binom{x}{y} \leq \underbrace{\left(\begin{array}{c}
b \\
-c \\
0 \\
0
\end{array}\right)}_{b^{\prime}} \Longrightarrow \underbrace{\left(\begin{array}{cccc}
A & 0 & 0 & -c \\
0 & -A & -I & b
\end{array}\right)}_{\mathscr{A}^{T}} \cdot\left(\begin{array}{l}
s \\
t \\
u \\
v
\end{array}\right)=\binom{0}{0}
$$

2. Strong Duality

Proof. Combining the system $\mathscr{A}^{T} z=0$ with $\left(b^{\prime}\right)^{T} z<0$ yields the following system of (in-)equalities

$$
\begin{array}{rlrl}
A^{T} S- & c v & =0 \\
-A t-u+b v & =0 \\
b^{T} S-c^{T} t & & <0
\end{array}
$$

In order to show that this system contradicts the feasibility of either (P) or (D), there are two different cases depending on the value of v.

2. Strong Duality

Proof. Case 1: $v>0$

By dividing the equations by v and renaming all the variables, there exist $s^{\prime}, u^{\prime} \geq 0$ with $s^{\prime}=\frac{1}{v} s, t^{\prime}=\frac{1}{v} t, u^{\prime}=\frac{1}{v} u$ such that

$$
\begin{aligned}
A^{T} s^{\prime} & =c \\
-A t^{\prime}-u^{\prime} & =-b \\
b^{T} s^{\prime}-c^{T} t^{\prime} & <0
\end{aligned}
$$

This means that s^{\prime} is dual feasible and t^{\prime} is primal feasible, therefore it holds by weak duality that $c^{T} t^{\prime} \leq b^{T} s^{\prime}$ contradicting $b^{T} s^{\prime}<c^{T} t^{\prime}$.

2. Strong Duality

Proof. Case 2: $v=0$
Then s satisfies $s \geq 0$ and $A^{T} s=0$, meaning for any $\alpha \geq 0, y^{\prime}+\alpha s$ is dual feasible. Similarly, $-A t=u \geq 0$ and therefore, for any $\alpha \geq 0, x^{\prime}+\alpha t$ is primal feasible. By weak duality, this means that, for any $\alpha \geq 0$, it holds that

$$
\begin{aligned}
c^{T}\left(x^{\prime}+\alpha t\right) & \leq b^{T}\left(y^{\prime}+\alpha s\right) \\
& \Longleftrightarrow \\
c^{T} x^{\prime}-b^{T} y^{\prime} & \leq \alpha\left(b^{T} s-c^{T} t\right)
\end{aligned}
$$

The right-hand side tends to $-\infty$ as α tends to ∞, which is a contradiction as the left-hand side is fixed.

2. Complementary Slackness

Complementary Slackness. If x is a feasible solution to (P) and y is a feasible solution to its dual (D), then x and y are optimal solutions to (P) and (D) respectively, if and only if either $y_{i}=0$ or $\sum_{j} a_{i j} x_{j}=b_{i}$ (or both) for all i.

Observation 1. Revisiting the equation in the weak duality proof shows the slack between a feasible and an optimal solution.

2. Complementary Slackness

Observation 2. Given an optimal solution x^{*} to (P), complementary slackness allows to compute an optimal solution to (D) from x^{*}, instead of solving the dual using an LP algorithm.

Example.

- Solve (D_{*}) to obtain an optimal solution $y^{*} \in \mathbb{R}_{\geq 0}^{2}$
- Compute an optimal solution $x^{*} \in \mathbb{R}_{\geq 0}^{4}$ to (P_{*}) from $y^{*} \in \mathbb{R}_{\geq 0}^{2}$ using complementary slackness

$$
\begin{array}{r}
\max \left(\begin{array}{llll}
13 & 23 & 2 & 1
\end{array}\right)^{T} \cdot x \\
\left(P_{*}\right) \quad\left(\begin{array}{llll}
2 & 3 & 4 & 5 \\
6 & 7 & 8 & 9
\end{array}\right) \cdot x
\end{array}
$$

$$
\min (68)^{T} \cdot y
$$

$$
\begin{gathered}
\left(\begin{array}{ll}
2 & 6 \\
3 & 7 \\
4 & 8 \\
5 & 9
\end{array}\right) \cdot y \geq\left(\begin{array}{c}
13 \\
23 \\
2 \\
1
\end{array}\right) \quad\left(D_{*}\right) \\
y \in \mathbb{R}_{\geq 0}^{2}
\end{gathered}
$$

Linear Programming II

Primal \& Dual LP
Duality Theorems
(M)(I)LP Complexity

3 Scheduling Example: ILP

3 Airline Example: MILP

Business Class

3 Different Program Formulations

MILP

$$
\begin{aligned}
A & \in \mathbb{Z}^{m \times\left(n_{1}+n_{2}\right)} \\
b & \in \mathbb{Z}^{m}, \\
c & \in \mathbb{Z}^{n_{1}}, d \in \mathbb{Z}^{n_{2}}, \\
x & \in \mathbb{Z}_{\geq 0}^{n_{1}}, y \in \mathbb{R}_{\geq 0}^{n_{2}}
\end{aligned}
$$

3 (M)(I)LP Complexity

3 LP Relaxation

LP Relaxation. Given a (mixed) integer linear program, the LP which arises by dropping the integrality constraint of each variable is called its LP relaxation.

Observation. This technique transforms an NP-hard optimization problem into a related problem solvable in polynomial time.

```
max }\mp@subsup{x}{2}{
\[
\begin{aligned}
-x_{1}+x_{2} & \leq 1 \\
3 x_{1}+2 x_{2} & \leq 12 \\
2 x_{1}+3 x_{2} & \leq 12
\end{aligned}
\]
\[
x_{1}, \quad x_{2} \in \mathbb{Z}_{\geq 0}^{2} \Rightarrow \mathbb{R}_{\geq 0}^{2}
\]
```


3. (M)ILP Algorithms

Branch and Bound

Cutting Plane Method

3 Sparse Constraint Matrices: n-fold

	Mon	Tue	Wed	Thu	Fri
8-10					Lecture 1
10-12		Lecture 1 Lecture 2			
12-14	Lecture 2			Lecture 1 Lecture 3	
14-16	Lecture 2 Lecture 3				
16-18				Lecture 3	

3 Sparse Constraint Matrices: n-fold

	Mon	Tue	Wed	Thu	Fri
8-10					
10-12					
12-14					
14-16					
16-18					

3 Sparse Constraint Matrices: n-fold

	Mon	Tue	Wed	Thu	Fri
8-10	Lecture 1			Lecture 2	Lecture 3
10-12			Lecture 3		
12-14	Lecture 2	Lecture 3	Lecture 1		
14-16	Lecture 1				Lecture 2
16-18					

3. Sparse Constraint Matrices: two-stage

All-Pairs Shortest Paths
Network Flow
Amortized Analysis
Randomized Algorithms
Hardness
Computability
Linear Programming
Approximation Algorithms

3 Sparse Constraint Matrices: two-stage

```
All-Pairs Shortest Paths
    Network Flow
    Amortized Analysis
    Randomized Algorithms
    Hardness
    Computability
    Linear Programming
    Approximation Algorithms
```


3 Sparse Constraint Matrices: two-stage

```
All-Pairs Shortest Paths
    Network Flow
    Amortized Analysis
    Randomized Algorithms
    Hardness
    Computability
    Linear Programming
    Approximation Algorithms
```


3. Sparse Constraint Matrices: two-stage

```
All-Pairs Shortest Paths
    Network Flow
    Amortized Analysis
    Randomized Algorithms
    Hardness
    Computability
    Linear Programming
    Approximation Algorithms
```


3. Sparse Constraint Matrices: two-stage

All-Pairs Shortest Paths
Network Flow
Amortized Analysis
Randomized Algorithms

Hardness

Computability
Linear Programming
Approximation Algorithms

3 Sparse Constraint Matrices: two-stage

All-Pairs Shortest Paths

Network Flow
Amortized Analysis
Randomized Algorithms
Hardness
Computability

Linear Programming
Approximation Algorithms

3 Sparse Constraint Matrices: two-stage

All-Pairs Shortest Paths
Network Flow
Amortized Analysis
Randomized Algorithms
Hardness
Computability
Linear Programming
Approximation Algorithms

3 Sparse Constraint Matrices: two-stage

All-Pairs Shortest Paths
Network Flow
Amortized Analysis
Randomized Algorithms
Hardness
Computability
Linear Programming
Approximation Algorithms

3 Sparse Constraint Matrices: two-stage

All-Pairs Shortest Paths
Network Flow
Amortized Analysis
Randomized Algorithms
Hardness
Computability
Linear Programming
Approximation Algorithms

3 Sparse Constraint Matrices: two-stage

All-Pairs Shortest Paths
Network Flow
Amortized Analysis
Randomized Algorithms
Hardness
Computability
Linear Programming
Approximation Algorithms

