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Abstract

The security of encryption algorithms is more important than ever because of their ubiquity in crit-
ical infrastructure like banking, defense, energy, and public administration. Two widely known and
significant types of attacks on encryption are linear and differential cryptanalysis. When design-
ing a cipher, i.e. an algorithm for encryption, resistance against these attacks is crucial. In order
to evaluate if a cipher is secure and will resist these attacks, the security bound, which is based on
the minimum number of active s-boxes in a cipher, has to be determined. Mouha et al. [29] present
a new method to calculate this bound using mixed integer linear programs (MILPs) for the ciphers
AES and Enocoro-128v2. To calculate these MILPs, Mouha et al. use an MILP solver. The goal of this
thesis is to analyze these MILPs and to search for inherent structures that can be potentially solved
more efficiently than with an MILP solver. As a matter of fact, new structures were found with a
Python framework that generates the constraint matrix and the related visualizations. The analy-
sis revealed that the linear and differential cryptanalysis MILP for the cipher AES can be described
with the 4-block structure. This is the first real-world occurrence of the 4-block which is a widely re-
searched theoretical structure. As for the Enocoro-128v2 MILP, a new structure, called stair-fold, has
been identified. These findings could help in accelerating the time spent searching for the minimum
number of active s-boxes in a cipher.
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1 Introduction
Contrary to the meaning of a crypt, this thesis has nothing to do with the analysis of underground
chambers. Instead, the ’crypt’ in cryptanalysis comes from ’crypto’, derived from the Greek word
kryptós which means ’hidden, secret’. Cryptanalysis belongs to the field of cryptology which exam-
ines encryption and decryption of information. Cryptology can be organized into two directions:
cryptography and cryptanalysis. Cryptography studies the development of encipherment systems
that are secure against manipulation and unwanted readers. The field of cryptanalysis on the other
hand attempts to break those encryptions and gain access to the messages. But to this day, no one
knows where the ’o’ in cryptanalysis went.

Even though the goals of cryptography and cryptanalysis appear to be complete opposites, the
fields depend on each other: For example, cryptanalysts help identify problems in encryption algo-
rithms made by cryptographers. These algorithms can then be built stronger than before. This thesis
looks at the attacks of differential and linear cryptanalysis and how to prove resistance against them.
Proving resistance against cryptanalysis is often done by calculating the minimum number of active
s-boxes in a cipher. With this number, one can find out the number of rounds required to be resis-
tant. Efficiently calculating a bound for the minimum number of active s-boxes is a central research
question in the field of linear and differential cryptanalysis. Before Mouha et al. [29] found an ap-
proach using MILPs, different methods were already established. The ’wide trail design strategy’ was
used by Daemen and Rijmen [16] to prove a security bound for the block cipher AES. With other
methods that involve a lot of manual work and programming, a minimum number of s-boxes or a
differential characteristic (which is used for the minimum number of active s-boxes) was calculated
in several papers for other ciphers like feistel structures [6, 7, 24, 33, 8]. Some of these works already
use integer linear programs (ILPs) to calculate the bound. Bogdanov [6, 7] also presented an approach
using MILPs, though the method requires solving many ILPs alongside and therefore is not as effi-
cient as the method of Mouha et al. published in 2011. Mouha et al. introduce new variables in order
to capture the problem in one big MILP, thereby fully automating the calculations. This approach
accelerates the time spent finding these bounds. The generated MILP is then solved by putting it into
an MILP solver. However, from an optimization perspective one could examine these MILPs and see
if they can be solved more easily by considering their inherent structure, since there are algorithms
to solve certain structures efficiently. This thesis analyzes the MILPs that Mouha et al. built for differ-
ential and linear cryptanalysis with the ciphers AES and Enocoro-128v2 from an optimization point
of view. To understand the use of MILPs for cryptanalysis we first define MILPs and their structures
in Section 1.1. Since we will look at cryptanalysis for the ciphers AES and Enocoro-128v2, a descrip-
tion of their working is given in Section 1.2. Then, the attacks of linear and differential cryptanalysis
are explained with the help of examples in Chapter 2. With this information, we can finally make the
connection of how MILPs can analyze the security of a cipher against the attacks of linear and differ-
ential cryptanalysis in Chapter 3. After that, a Python framework to generate the MILP for a given
cipher and analyze the structure of the constraint matrix is presented in Section 4.1. With the help
of this framework, new matrix structures for the constraint matrix were found, inter alia, the first
real-world example of the 4-block structure. The new-found structures are then depicted in detail in
Section 4.2 and 4.3.



1.1 Mixed Integer Linear Programs

In the field of optimization, linear programs are commonly used to find an optimal solution to a
problem. They consist of an objective function that has to be minimized or maximized over given
variables and constraints that restrict the values of the variables. Problems where every variable in
the solution vector can take fractional values are called linear programs (LPs). In contrast to LPs, the
solution to an ILP can take only integer values. Normally, for the analysis of attacks ILPs were used.
But, since MILPs have a better practical application in real-world, the ILPs are later transformed into
MILPs. The objective function of an MILP contains integer variables but also variables that can take
fractional values.

▶ Definition 1.1 (MILP). Consider the matrices 𝑀1 ∈ Z𝑚×𝑛1 , 𝑀2 ∈ Z𝑚×𝑛2 and the vectors 𝑐 ∈ Z𝑛1 ,
𝑑 ∈ Z𝑛2 , 𝑏 ∈ R𝑚. A MILP consisting of an objective function and constraints has the form

𝑚𝑎𝑥 𝑐𝑇𝑥 + 𝑑𝑇 𝑦

(𝑀1𝑀2)
(
𝑥

𝑦

)
= 𝑏

where 𝑥 ∈ Z𝑛1≥0 and 𝑦 ∈ R𝑛2≥0.

Regarding complexity, LPs can be solved efficiently in polynomial time. ILPs on the other hand
are NP-complete and not believed to be generally solvable in polynomial time. When comparing an
MILP and an ILP with the same size, the MILP can be solved more efficiently since it contains less
integer variables, but not efficient like LPs. MILPs exist naturally in many different occasions. One
example is agricultural production planning, where some parameters can take only integer values
(labor) and others have no integral restrictions (land, fertilizer). In practice, the solution of an MILP
can be found with a solver like Gurobi 1, which was used by Mouha et al. as well. Gurobi finds
the optimal solution for arbitrary MILPs without considering the constraint matrix structure. But,
analyzing the constraint matrix structure might have an advantage: Depending on the structure,
more efficient algorithms can be used. Through permutation of the rows and columns, a constraint
matrix can take the form of different structures. One of these structures is the 4-block structure,
which consists of four types of blocks.

▶ Definition 1.2 (4-block). Consider the matrices 𝐴 ∈ Zℎ𝐴×𝑤𝐴 , 𝐵1, ..., 𝐵𝑟 ∈ Zℎ𝐵×𝑤𝐵 , 𝐶1, ..., 𝐶𝑟 ∈ Zℎ𝐶×𝑤𝐶
and 𝐷1, ..., 𝐷𝑟 ∈ Zℎ𝐷×𝑤𝐷 with ℎ𝐴 = ℎ𝐵, 𝑤𝐴 = 𝑤𝐶 , 𝑤𝐷 = 𝑤𝐵 and ℎ𝐷 = ℎ𝐶 . An MILP is called a 4-block if the
constraint matrix has the following structure

©«
𝐴 𝐵1 · · · 𝐵𝑟

𝐶1 𝐷1
...

. . .

𝐶𝑟 𝐷𝑟

ª®®®®®¬
©«
𝑥

𝑦1
...

𝑦𝑟

ª®®®®®¬
≥ 0,

where mixed solution vector consists of 𝑥 ∈ Z𝑤𝐴

≥0 , 𝑦1 ∈ Z𝑤𝐵≥0, 𝑦𝑖 ∈ R𝑤𝐵≥0 ∀𝑖 ∈ 2, ..., 𝑟 and 0 denotes an
all-zero vector.

From now on, if an entry in a matrix is empty, it corresponds to a zero. The symbol 0𝑚×𝑛 denotes
an all-zero matrix with the dimensions 𝑚 × 𝑛. In the 4-block structure, block 𝐴 has the same height
as all of the 𝐵-blocks and the same width as all of the 𝐶-blocks. Each 𝐷-block has the same width as
the 𝐵-blocks and the height of the 𝐶-blocks. The 𝐷-blocks form a diagonal in the matrix and are inde-
pendent from each other. Since the 4-block describes the constraints of an MILP, it contains integer

1https://www.gurobi.com/
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and fractional values. The variables corresponding to the 𝐴-block and first 𝐵-block 𝐵1 have to take
integer values and the remaining variables can take fractional values. The 4-block is a combination
of two well-researched block structures, namely n-fold and two-stage [13, 19, 12, 26, 22, 25, 23]. While
those two structures admit an ’efficient’ algorithm exploiting their structure, it is unknown whether
there exists one for 4-block. Section 4.3 contains the first real-world 4-block example.

Further, we newly introduce the stair-fold structure, partly inspired by the n-fold structure. As
opposed to an n-fold, the blocks on the diagonal are not independent.

▶ Definition 1.3 (Stair-fold). Consider the matrices 𝐶1 ∈ Zℎ𝐶×𝑤𝐶1 , 𝐶2 ∈ Zℎ𝐶×𝑤𝐶2 , 𝐴1, ..., 𝐴𝑟 ∈ Zℎ𝐴×𝑤𝐴 and
𝐵𝑖 ∈ Zℎ𝐵×𝑤𝑖 for 𝑖 = {1, ..., 𝑞} and 𝐵𝑖 ∈ Zℎ𝐵×𝑤𝐵 for 𝑖 = {𝑞 + 1, ..., 𝑟} with ℎ𝐴 = ℎ𝐵. An MILP is called a
stair-block if the constraint matrix has the following structure

©«

𝐴1 𝐵1

𝐴2
...

. . .

𝐴𝑟

𝐶1 𝐶2

𝐵2

𝐵𝑞−1
𝐵𝑞

𝐵𝑞+1
𝐵𝑞+2

𝐵𝑟

ª®®®®®®®®®®®®®®®®®®®®¬

·
©«
𝑥

𝑦

𝑧

ª®®¬ ≥ 0,

where the mixed solution vector consists of 𝑥 ∈ Z𝑤𝐶1+𝑟·𝑤𝐴 , 𝑦 ∈ Z 𝑗 and 𝑧 ∈ R𝑤𝐶2− 𝑗 .

The first 𝑗 variables corresponding to the 𝐶2 block have to take integer values as well as the vari-
ables corresponding to the 𝐴-blocks and 𝐶1 block. The rest of the variables is free.

1.2 Symmetric Ciphers

The word cipher derives from the Arabic word for zero sifr which turned into the medieval Latin
word cifra, when the Arabic numerical system was adapted in Europe in the Middle Ages. Europeans
at the time used the roman number system where the number zero did simply not exist. The concept
of zero was therefore confusing and mystical to Europeans, and the term was then used to refer to
a secret message [17]. In fact, our modern ciphers do exactly this: they transform easily understood
messages into hard to unravel code. A cipher is an algorithm used to encrypt or decrypt a message.
It takes a key and the plaintext as an input, and returns the ciphertext, which (hopefully) makes no
sense by reading it. This cryptic message can then be decrypted with a key in order to get the orig-
inal message, the plaintext. Ciphers can be asymmetric or symmetric. In an asymmetric cipher like
the RSA-Cryptosystem, two separate keys are needed for the encryption and decryption. Symmetric
ciphers use the same key for both the encryption and decryption of a message. In order to extract
the message from the ciphertext, one uses the same key and the reverse cipher, and gets the original
plaintext. Since linear and differential cryptanalysis are attacks against symmetric ciphers, the thesis
will focus on them.

For symmetric ciphers, there are different methods of encrypting messages. Stream ciphers en-
crypt the message one-by-one for each digit in the plaintext. Enocoro-128v2, for example, is a stream
cipher. In block ciphers, the input message is computed through the operations with a fixed num-
ber of bits, a block. A significant type of block cipher is the substitution-permutation-network (SPN),
which has substitution and permutation layers. SPNs are the basis for AES and other ciphers. Since

3



+ + +

𝑖1 𝑖2 𝑖3

S Substitution Layer

Key Mixing

Permutation Layer

𝑜1 𝑜2 𝑜3

■ Figure 1.1. Substitution Permutation Network

linear and differential cryptanalysis will be explained with an SPN and they are the basis for AES, a
description of them follows. In an SPN, the input bits are first XOR-ed with the key in the key-mixing
step. The resulting bits go through the substitution layer, which often is an s-box. The s-box is a bi-
jective nonlinear mapping of the bits. The output of the s-box is then permutated in the permutation
layer. This describes one round. The output of the current round will be the input for the next round.
A cipher always has a specified number of rounds where the operations are repeated. This ensures
a stronger encryption of the message since for every round the message will diffuse more and more.
Figure 1.1 shows one round of a simple, generic SPN, while real-world applications usually have more
than three inputs and one s-box per round.

1.2.1 AES

In 1997, the National Institute of Standards and Technology of the United States (NIST) announced
that a new encryption standard was needed [30]. Fifteen different ciphers were submitted and the
cipher Rijndael was chosen to be the new advanced encryption standard with a few alterations [31].
Rijndael, which is now called the advanced encryption standard (AES), is a block cipher designed
in 1998 by Joan Daemen and Vincent Rijmen. Today, AES is still being used, and it is the only pub-
licly available cipher that has been approved to transfer top secret information by the U.S. national
security agency (NSA) [34].

AES has a block size of 128 bits for the message, and a key size of 128, 192, or 256 bits. Depending
on this key size, there are 10, 12, or 14 rounds. 10 rounds for 128-bit key size, 12 for 192-bit key, and 14
for 256-bit key. The more rounds a cipher uses, the safer it is against attacks. Every operation in the
cipher is calculated on a 4 × 4 array of 16 bytes called the state array and in the first round the state
is filled with the input, the plaintext. The operations are all computed over the finite field 𝐺𝐹 (28).
AES is such a significant cipher because with just a few operations the message will be completely
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convoluted. That is why we explain every operation separately. In the beginning, the round key is
added to the state bytes with AddRoundKey(). Then, every round except for the last one consists of
the same operations:

SubBytes()︸       ︷︷       ︸
𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛

−→ ShiftRows() −→ MixColumns()︸                                  ︷︷                                  ︸
𝑃𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛

−→ AddRoundKey()

In the last round, the MixColumns() step is not executed. The output of one operation is the input for
the next operation. The cipher is based on an SPN as depicted in Figure 1.1, thus there is a substitution
and permutation layer in every round, which both contribute to the diffusion of the message. In
the following, each operation will be explained in more detail with a corresponding visualization in
Figure 1.2, where the left (right) side depicts the state array before (after) the operation.

SubBytes()

Every state byte 𝑏𝑖 goes through the s-box and is replaced by 𝑆(𝑏𝑖). The s-box is a 8 × 8 bit non-linear
mapping. The corresponding byte 𝑆(𝑏𝑖) to the state byte 𝑏𝑖 can be found in the lookup-table for the
s-box. As explained later, s-boxes are a crucial step to linear and differential cryptanalysis. This is
because they represent the only non-linear function. Without the s-boxes, the cipher would be much
less secure.

ShiftRows()

Each row of the state array is now shifted cyclically to the left. The first row stays the same, the second
row shifts one to the left, the third two to the left and the last row three to the left. This assures that
after the operation each column contains bytes that were previously in every other column, avoiding
an independent encryption of every column in the next step. This would mean that AES consists
of four smaller independent ciphers, which is not the goal. The shift is emphasized by the colored
columns in Figure 1.2.

MixColumns()

Every column is multiplied with a fixed matrix. This linear function results in a new column where
every output byte is influenced by all four input bytes. Together with ShiftRows(), MixColumns() is
mainly responsible for the diffusion in the cipher. The step can be described as the multiplication
with the MDS matrix below in the finite field 𝐺𝐹 (28).

AddRoundKey()

With the help of a key schedule, the key is expanded into many round keys. In this step, the state
array is combined with the corresponding round key through a XOR operation. Since the round key
has the same size as the state array, every byte from the state array is XOR-ed with a byte from the
round key.

When analyzing an attack on the cipher, we do not consider how exactly these operations work, but
only how they change the state array. Therefore, an example of an encryption would not contribute
to the understanding of the following chapters and is out of the scope of this thesis.
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SubBytes()
𝑏0 𝑏4 𝑏8 𝑏12

𝑏1 𝑏5 𝑏9 𝑏13

𝑏2 𝑏6 𝑏10 𝑏14

𝑏3 𝑏7 𝑏11 𝑏15

𝑆(𝑏0) 𝑆(𝑏4) 𝑆(𝑏8) 𝑆(𝑏12)

𝑆(𝑏1) 𝑆(𝑏5) 𝑆(𝑏9) 𝑆(𝑏13)

𝑆(𝑏2) 𝑆(𝑏6) 𝑆(𝑏10) 𝑆(𝑏14)

𝑆(𝑏3) 𝑆(𝑏7) 𝑆(𝑏11) 𝑆(𝑏15)

S

ShiftRows()

A

𝑏0 𝑏4 𝑏8 𝑏12

𝑏1 𝑏5 𝑏9 𝑏13

𝑏2 𝑏6 𝑏10 𝑏14

𝑏3 𝑏7 𝑏11 𝑏15

𝑏0 𝑏4 𝑏8 𝑏12

𝑏5 𝑏9 𝑏13 𝑏1

𝑏10 𝑏14 𝑏2 𝑏6

𝑏15 𝑏3 𝑏7 𝑏11

ShiftRows()

MixColumns()

A

𝑏0 𝑏4 𝑏8 𝑏12

𝑏1 𝑏5 𝑏9 𝑏13

𝑏2 𝑏6 𝑏10 𝑏14

𝑏3 𝑏7 𝑏11 𝑏15

𝑏16 𝑏20 𝑏24 𝑏28

𝑏17 𝑏21 𝑏25 𝑏29

𝑏18 𝑏22 𝑏26 𝑏30

𝑏19 𝑏23 𝑏27 𝑏31


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2




𝑏𝑖
𝑏𝑖+1
𝑏𝑖+2
𝑏𝑖+3


=


𝑏 𝑗

𝑏 𝑗+1
𝑏 𝑗+2
𝑏 𝑗+3



for each column:

AddRoundKey()

A

𝑏0 𝑏4 𝑏8 𝑏12

𝑏1 𝑏5 𝑏9 𝑏13

𝑏2 𝑏6 𝑏10 𝑏14

𝑏3 𝑏7 𝑏11 𝑏15

𝑏16 𝑏20 𝑏24 𝑏28

𝑏17 𝑏21 𝑏25 𝑏29

𝑏18 𝑏22 𝑏26 𝑏30

𝑏19 𝑏23 𝑏27 𝑏31

𝑘0 𝑘4 𝑘8 𝑘12

𝑘1 𝑘5 𝑘9 𝑘13

𝑘2 𝑘6 𝑘10 𝑘14

𝑘3 𝑘7 𝑘11 𝑘15

𝑏𝑖 ⊕ 𝑘𝑖 = 𝑏 𝑗

■ Figure 1.2. Visualization for the operations in the cipher AES [14]. Each operation is executed
once in a round. The input of the operations is always the state array that was the output of the last
operation.
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a. XOR operation b. Three forked branch

L

c. Linear function

■ Figure 1.3. Operations for Enocoro-128v2. The XOR operation takes two bytes as an input and
outputs the byte that results from XOR-ing the input. The three forked branch takes one input and
duplicates it, thus the two output bytes correspond to the input byte. The linear function is a linear
transformation of two input bytes multiplied with a 2 × 2 matrix over 𝐺𝐹 (28).

1.2.2 Enocoro-128v2

The cipher Enocoro-128v2 was developed by the Japanese company Hitachi [21]. Published in 2010,
it was a contender in the process for CRYPTREC, a Japanese government project similar to the search
for the new Advanced Encryption Standard in the USA. Although it was not selected, the cipher, which
is a pseudorandom number generator, is considered safe in terms of security [32, 18]. Enocoro-128v2
is a stream cipher, so the input bytes are encrypted one at a time. The following is a short description
of the cipher.

As an input, the cipher takes a 128 bit key and 64 bit initial vector. The state (similar to the state
array in AES) consists of buffer 𝑏 with 32 bytes and buffer 𝑎 with two bytes. The first 16 bytes of the
buffer 𝑏 consist of the key, and the following eight bytes consist of the initial vector. The rest of buffer
𝑏 and buffer 𝑎 is filled with predefined constants. The number of rounds is set to 96 for Enocoro-
128v2. Though as we will see later on, it is resistant against certain attacks with fewer rounds. In
one round, there are eight XOR operations with bytes from the state. A XOR operation can be seen in
Figure 1.3a. Corresponding to these, there are eight three forked branches. A three forked branch,
depicted in Figure 1.3b, takes a byte as an input and then outputs the same byte two times so that it
can be used in two new operations. The linear function, which consists of multiplying a predefined
matrix with the input over𝐺𝐹 (28), is executed one time. It has two inputs and two outputs and can be
seen in Figure 1.3c. How the multiplication in the linear transformation exactly works is not relevant
for this thesis, as we will see later on. In total, four bytes go through the 8× 8 s-box per round. At the
end, the bytes from the buffer are shifted to the right. In Figure 1.4 the exact order and use of those
operations in one round is described. In the same figure, a small example of two bytes using a three
forked branch and a XOR operation can be seen.
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key initial vector predefined constants

01011001 11100010

10111011 11100010

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 0 162

L

S

S

S

S

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 0 173

■ Figure 1.4. Visualization of one round for Enocoro-128v2 [21]. For the first round, the state is
filled in the following way: The first sixteen bytes consist of the key. The next eight bytes are our
initial vector, thus our message to be encrypted. The remaining bytes are filled with predefined
constraints. The bytes then go through the operations and four bytes go through the s-box. At the
end of the round, we have again 34 bytes which will be the input for the next round. Example for
two bytes: Assuming at the beginning of the round the byte 𝑏2 is (01011001) and 𝑏6 is (11100010).
The three forked branch duplicates the byte 𝑏6 and one output goes to the XOR operation and the
other one is put into the byte at position 7. The bytes at position 2 and 6 are XOR-ed and put into the
byte at position 3. After the round the byte 𝑏3 is (10111011) and 𝑏7 is (11100010).
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2 Linear and Differential Cryptanalysis

Even though linear and differential cryptanalysis are often compared and analyzed together, they
were discovered independently. The method of differential cryptanalysis was first published by Bi-
ham and Shamir [4] in 1990 where they analyzed the attack with different DES-like cryptosystems.
DES was the predecessor of AES designed by the company IBM. Rightfully, Shamir and Biham [5] re-
marked that DES is not as weak against differential cryptanalysis as they thought it would be. In fact,
a member of the original IBM DES team revealed in 1994 that DES was designed to withstand dif-
ferential cryptanalysis, which was known to them since 1974. But, in accordance with the NSA, IBM
decided to not publish the attack in order to secure the advantage of the USA in the field of cryptanal-
ysis [10]. The discovery of linear cryptanalysis was more calm: Matsui and Yamagishi [28] published
a paper in 1992 where they presented the technique. In 1993, Matsui [27] applied linear cryptanal-
ysis to the DES cipher. In this paper, he also states the Piling-up Lemma which is still relevant and
applicable today. The Piling-up Lemma describes the probability that a linear boolean function holds
and it is used for linear cryptanalysis as we will see in Chapter 3. Since then, linear and differential
cryptanalysis became two of the most significant attacks.

2.1 Linear Cryptanalysis

Linear cryptanalysis works by finding a linear approximation between the input and the output of
the s-box. The s-box is the only non-linear operation in a cipher and the approximation tries to find
a linearity within the s-box. It is a known-plaintext attack, the attacker has access to a set of plain-
texts and their corresponding ciphertexts. The structure and working of the cipher are known. The
attacker wants to prove that they are not in a random-world setting, and maybe even extract the key.
Contrary to a random permutation, a cipher has a structure. If the attacker knows that the procedures
are not random, the steps of the cipher can be reenacted and dependencies can be found.

Thus, the goal is to find a linear connection between the input and output of an s-box in order to
prove that the ciphertext is not a random permutation. To describe a connection, this linear equation
can be used for an 𝑛 × 𝑛 bit s-box:

𝑥1 ⊕ 𝑥2 ⊕ 𝑥3 ⊕ ... ⊕ 𝑥𝑛 = 𝑦1 ⊕ 𝑦2 ⊕ 𝑦3 ⊕ ... ⊕ 𝑦𝑛

where 𝑋 = (𝑥1, 𝑥2, 𝑥3, ..., 𝑥𝑛) represent the input bits of the s-box and 𝑌 = ( 𝑦1, 𝑦2, 𝑦3, ..., 𝑦𝑛) the out-
put bits of the s-box. The symbol ⊕ describes the exclusive or (XOR). But the equation describing
the connection between every input bit and every output bit is not the only interesting part, every
other combination of input and output bits can also give information to the attacker. For these com-
binations, so-called linear masks are used. Every equation can be described by a linear input mask
Γ𝑥 and a linear output mask Γ 𝑦. For the input/output of an s-box, a mask indicates for each bit if it
is contained in the equation or not. Considering a 3 × 3 bit s-box, the equation for the input mask
Γ𝑥 = (101) and output mask Γ 𝑦 = (100) looks like the following

1𝑥1 ⊕ 0𝑥2 ⊕ 1𝑥3 = 1𝑦1 ⊕ 0𝑦2 ⊕ 0𝑦3.



𝑥1 𝑥2 𝑥3 𝑦1 𝑦2 𝑦3 𝑥1 ⊕ 𝑥3 𝑥1 ⊕ 𝑥3 = 𝑦1

0 0 0 0 1 0 0 True
0 0 1 1 0 1 1 True
0 1 0 0 1 1 0 True
0 1 1 0 0 1 1 False
1 0 0 1 1 1 1 True
1 0 1 0 0 0 0 True
1 1 0 1 0 0 1 True
1 1 1 1 1 0 0 False

a. Outcomes for linear masks Γ𝑥 = (101) and Γ 𝑦 = (100)

0 1 2 3 4 5 6 7
0 +4 0 0 0 0 0 0 0
1 0 0 -2 +2 0 0 -2 -2
2 0 0 0 0 0 +4 0 0
3 0 0 -2 -2 0 0 +2 -2
4 0 -2 0 -2 +2 0 -2 0
5 0 +2 -2 0 +2 0 0 +2
6 0 +2 0 -2 -2 0 -2 0
7 0 +2 +2 0 +2 0 0 -2

b. Linear Approximation Table (LAT)

■ Figure 2.1. Tables for linear cryptanalysis. With the Table 2.1a the entry of the LAT in Table 2.1b
in the fifth row and fourth columns is calculated.

We only look at the first and last input bit and the first output bit, thus

𝑥1 ⊕ 𝑥3 = 𝑦1.

In the following example, we examine this equation and try to find out if there is a linearity. Consider
this 3 × 3 bit s-box:

input (𝑥1, 𝑥2, 𝑥3) 000 001 010 011 100 101 110 111
output ( 𝑦1, 𝑦2, 𝑦3) 010 101 011 001 111 000 100 110

In a random world, the equation 𝑥1⊕𝑥3 = 𝑦1 should be true with probability 𝑝 = 1/2. But applying
the equation to all possible inputs of our s-box, we see in the table in Figure 2.1a that it holds true in
6 out of 8 cases. Thus, 𝑝 = 6/8 and we know that we are not in a random world and can predict the
working of the s-box. One could also find an equation that occurs with a lower probability than 1/2,
since the goal is to have a probability that is as far away from 1/2 as possible. To describe this deviation
from 1/2, the bias 𝜖 is used. The bias is defined as 𝜖 = 𝑝−1/2. The bias of the example above would be
6/8−1/2 = 2/8. Since we go through many s-boxes during the attack, as explained in the next chapter,
we want to know the probability of every possible equation. These probabilities/biases are stored in a
linear approximation table (LAT). An LAT consists of 2𝑛 columns and rows for a message of 𝑛 bits. The
rows describe the input linear mask, thus which input bits belong to the equation and the columns
show the output linear mask, thus which output bits belong to the other side of the equation. The
linear masks are depicted as decimal numbers. The LAT for our s-box can be found in Figure 2.1b.
The equation from our example 𝑥1 ⊕ 𝑥3 = 𝑦1 will be at the fifth row and fourth column since the
linear masks are Γ𝑥 = (101) (5 in decimal notation) and Γ 𝑦 = (100) (4 in decimal notation). Every
entry describes how often the related equation holds true in comparison to the expected number if
we were in a random world. That means in our example we subtract the actual number of cases by
4, since if the equation holds true for 4 cases, the probability is 4/8 = 1/2, thus random. Through
dividing the entry with 2𝑛, one gets the bias of this linear mask combination. Thus, in the example
above the entry is +2, because we have 4 + 2 cases in which the equation holds true. We can use this
knowledge to derive the key. Consider the (not-so-secure) cipher in Figure 2.2 which consists of one
round. The s-box is the same as in our previous example.

We have a pair of plain- and ciphertext as the input 𝑖1, 𝑖2, 𝑖3 = 1, 0, 1 and the output 𝑜1, 𝑜2, 𝑜3 =

1, 1, 1. The key is not known to us. This time, we look at the input mask Γ𝑥 = (001) and output mask
Γ 𝑦 = (011). Looking at the LAT (row 1 and column 3), we know that with a probability of (4+2)/8 =
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+𝑘1 +𝑘2 +𝑘3

𝑖1 𝑖2 𝑖3

𝑥1 𝑥2 𝑥3

S

𝑦1 𝑦2 𝑦3

𝑜1 𝑜2 𝑜3

■ Figure 2.2. Example Cipher where 𝑖1, 𝑖2, 𝑖3 is the plaintext and 𝑜1, 𝑜2, 𝑜3 is the output in ciphertext.
Further, 𝑘1, 𝑘2, 𝑘3 is the key and 𝑥1, 𝑥2, 𝑥3 and 𝑦1, 𝑦2, 𝑦3 denote the in- and output of the s-box.

3/4 the equation 0𝑥1 ⊕ 0𝑥2 ⊕ 1𝑥3 = 0𝑦1 ⊕ 0𝑦2 ⊕ 0𝑦3 will hold. Thus, we look at

𝑥3 = 𝑦2 ⊕ 𝑦3,

where 𝑥3 is the combination of the key 𝑘3 and the input 𝑖3. Thus, 𝑥3 = 𝑖3 ⊕ 𝑘3. Substituting 𝑥3 for
𝑖3 ⊕ 𝑘3, we get

𝑖3 ⊕ 𝑘3 = 𝑦2 ⊕ 𝑦3.

By going through the permutation layer, 𝑦3 becomes 𝑜1 and 𝑦2 becomes 𝑜3, so 𝑦3 = 𝑜1 and 𝑦2 = 𝑜3.
We can replace them in our equation and get

𝑖3 ⊕ 𝑘3 = 𝑜3 ⊕ 𝑜1.

Since we are in possession of the input and output values, we can insert them. Finally, 𝑘3 is the only
unknown variable,

1 ⊕ 𝑘3 = 1 ⊕ 1.

Subsequently, we know that 𝑘3 = 1 with a probability of 3/4. This is how the attacker can extract the
key. In a more secure (and realistic) cipher, there is more than one round and thus finding the key is
more difficult.

The probabilities for each combination of linear masks can also be described with the linear prob-
ability. The linear probability is already the deviation from 1/2, thus it describes the bias. For our
simple example, the linear probability for a pair of input and output masks can be found in the LAT
by dividing the absolute entry by 2𝑛. To find the most significant probability of the cipher, we use the
maximum linear probability (MLP).

▶ Definition 2.1 (MLP). Consider an 𝑛 × 𝑛 bit s-box. The MLP describes its biggest bias

𝑀𝐿𝑃 = 𝑚𝑎𝑥𝑣,𝑤≠0

{
|𝐿𝐴𝑇 (𝑣, 𝑤) |

2𝑛

}
,

where 𝐿𝐴𝑇 (𝑣, 𝑤) denotes the entry of the LAT in row 𝑣 and column 𝑤.
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It is computed by finding the biggest absolute value in the LAT and dividing it by 2𝑛. It depicts the
farthest one can be from the random world in terms of probability. For the attacker, a high MLP is
optimal, while the cryptographer wants to have a small MLP for their cipher to keep it as close to the
random world as possible. To describe an s-box or a function in a cipher the branch number [1] can
be very useful. It helps in seeing how many of the in- and output values of the s-box or function have
to be active in the minimum case. An in- or output value is active, if the corresponding value in the
linear mask is set to one.

▶Definition 2.2 (Linear branch number). The linear branch number 𝑏𝐿 of an s-box or function is defined
as

𝑏𝐿 = 𝑚𝑖𝑛𝑣≠0,𝑤,𝐿𝐴𝑇 (𝑣,𝑤)≠0{𝑤𝑡(𝑣) + 𝑤𝑡(𝑤)},

where LAT(v, w) is the entry of the LAT in row 𝑣 and column𝑤 and𝑤𝑡() describes the hamming weight,
which is the sum of nonzero bits, e.g. 𝑤𝑡(5) = 𝑤𝑡(101) = 2.

In other words, the linear branch number is the minimum number of nonzero entries in the input
and output linear masks of a function excluding the case where both masks are zero. Thus, if one bit
in the input or output linear mask has the value one, at least 𝑏𝐿 input and output bits from the linear
masks need to be active. For our s-box the linear branch number would be 𝑏𝐿 = 2, since in the LAT in
Figure 2.1b the column for an all-zero output mask (𝑤 = 0) has only entries with the value zero, except
for the all zero case 𝑣 = 𝑤 = 0 which is excluded by definition. That means the linear branch number
for this s-box cannot be 𝑏𝐿 = 1. But, as 𝐿𝐴𝑇 (1, 2) ≠ 0 and 𝑤𝑡(1) + 𝑤𝑡(2) = 𝑤𝑡(001) + 𝑤𝑡(010) = 2,
and the number smaller than two was excluded, one can conclude that the linear branch number is
𝑏𝐿 = 2. In the design process of an s-box, the branch number is a significant metric. Therefore, the
branch number can be found in the specifications of the corresponding cipher, since it can be menial
to calculate it manually.

2.2 Differential Cryptanalysis

Differential cryptanalysis has a similar structure to linear cryptanalysis, but the difference lies in the
approximation of the s-box. It is a chosen plaintext attack, which means that the attacker has access
to specific plain- and ciphertexts. This is important because while building a path through the cipher,
we will look at the difference of two inputs in order to find an approximation. Consider the inputs
𝑋 = (𝑥1, 𝑥2, ..., 𝑥𝑛) and 𝑋 ′ = (𝑥′1, 𝑥′2, ..., 𝑥′𝑛) and outputs𝑌 = ( 𝑦1, 𝑦2, ..., 𝑦𝑛) and𝑌 ′ = ( 𝑦′1, 𝑦′2, ..., 𝑦′𝑛) of an
s-box. The symbol 𝛿𝑋 denotes the difference between two s-box inputs 𝑋 and 𝑋 ′. Their corresponding
outputs are𝑌 and𝑌 ′, and their difference is 𝛿𝑌 . The difference is calculated with an exclusive or, thus

𝛿𝑋 = (𝑥1 ⊕ 𝑥′1, 𝑥2 ⊕ 𝑥′2, ..., 𝑥𝑛 ⊕ 𝑥′𝑛),

and 𝛿𝑌 is constructed in the same way. Now we look at the possible output differences 𝛿𝑌 and how
they relate to 𝛿𝑋 . In a random world, a certain output difference 𝛿𝑌 to a certain 𝛿𝑋 should occur with
a probability of 1/2𝑛 when the message is consisting of 𝑛 bits. The difference 𝛿𝑌 should be completely
independent of 𝛿𝑋 . But, as we will see in the following example, this is not always true. Attackers use
this to their advantage. Consider the same s-box as before:

input (𝑥1, 𝑥2, 𝑥3) 000 001 010 011 100 101 110 111
output ( 𝑦1, 𝑦2, 𝑦3) 010 101 011 001 111 000 100 110

In a random world when all input pairs have a difference of 𝛿𝑋 = 101, they should all have
different output differences 𝛿𝑌 , since every combination has a probability of 1/8 of occurring in the
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𝑋 𝑋 ′ 𝛿𝑋 𝑌 𝑌 ′ 𝛿𝑌

000 101 101 010 000 010
001 100 101 101 111 010
010 111 101 011 110 101
011 110 101 001 100 101
100 001 101 111 101 010
101 000 101 000 010 010
110 011 101 100 001 101
111 010 101 110 011 101

a. All possible input pairs for 𝛿𝑋 = 101 and
their results 𝛿𝑌

0 1 2 3 4 5 6 7
0 8 0 0 0 0 0 0 0
1 0 0 4 0 0 0 0 4
2 0 2 0 2 2 0 2 0
3 0 2 0 2 2 0 2 0
4 0 0 0 0 0 4 0 4
5 0 0 4 0 0 4 0 0
6 0 2 0 2 2 0 2 0
7 0 2 0 2 2 0 2 0

b. Difference Distribution Table (DDT)

■ Figure 2.3. Tables for differential cryptanalysis. With Table 2.3a the entries of the DDT in Table
2.3b for the fifth row are calculated.

random world. But when we look at all possible 𝛿𝑌 in Figure 2.3a for our s-box, we see that this is not
true. In four cases, 𝛿𝑌 = 010 and in the other four 𝛿𝑌 = 101. This means, they each have a probability
of 1/2 while the rest has a probability of 0. This is not optimal since it is not behaving randomly, which
in turn tells the attacker that a cipher was used. Which 𝛿𝑋 leads to which 𝛿𝑌 is stored in a difference
distribution table (DDT). For a specific row (𝛿𝑋) it shows how the 𝛿𝑌 are distributed, thus the sum of a
row is always 2𝑛. The DDT for our example s-box is depicted in Figure 2.3b. We calculated the entries
for the row five (since 5=101 in binary) in Figure 2.3a. Since we had four output differences that were
010 and the other four were 101, the entry is four in the columns of two (2=010) and five (5=101). The
rest of the row has the value zero. By repeating this for every row (every input difference), the DDT
is completed. The DDT is useful because the difference of the inputs becomes important. When we
look again at the cipher in Figure 2.2, consider two in- and outputs (𝐼 = (𝑖1, 𝑖2, 𝑖3), 𝐼 ′ = (𝑖′1, 𝑖′2, 𝑖′3) and
𝑂 = (𝑜1, 𝑜2, 𝑜3), 𝑂′ = (𝑜′1, 𝑜′2, 𝑜′3)). The key remains the same 𝐾 = 𝐾 ′. Now we look at the differences
during the process of encryption. We have 𝛿𝐼 as the difference between the plaintexts. We know that
𝑋 (and similarly 𝑋 ′) is constructed through XOR-ing 𝐼 and 𝐾:

(𝑥1, 𝑥2, 𝑥3) = (𝑖1 ⊕ 𝑘1, 𝑖2 ⊕ 𝑘2, 𝑖3 ⊕ 𝑘3).

The difference 𝛿𝑋 is calculated with:

𝛿𝑋 = (𝑥1 ⊕ 𝑥′1, 𝑥2 ⊕ 𝑥′2, 𝑥3 ⊕ 𝑥′3).

Hence, the combined equations:

𝛿𝑋 = (𝑖1 ⊕ 𝑘1 ⊕ 𝑖′1 ⊕ 𝑘1, 𝑖2 ⊕ 𝑘2 ⊕ 𝑖′2 ⊕ 𝑘2, 𝑖3 ⊕ 𝑘3 ⊕ 𝑖′3 ⊕ 𝑘3).

When XOR-ing the same values, the result will always be zero (𝑘1 ⊕ 𝑘1 = 0). Thus, we can eliminate
them from the calculation:

𝛿𝑋 = (𝑖1 ⊕ 𝑖′1, 𝑖2 ⊕ 𝑖′2, 𝑖3 ⊕ 𝑖′3).

It follows directly that
𝛿𝑋 = 𝛿𝐼.

So if we have 𝛿𝐼 = 101 it follows that 𝛿𝑋 = 101. From the DDT we see that with a probability of
1/2 the output of the s-box will be 𝛿𝑌 = 010 and going through the permutation, 𝛿𝑂 = 001. Thus, if
the attacker takes many input pairs with 𝛿𝐼 = 101 and approximately half of the output pairs have
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𝛿𝑂 = 001, they can distinguish the cipher from a random function and assume that we are in the real
world.

In differential cryptanalysis, the key extraction process is a bit trickier than in linear cryptanaly-
sis. It works by going through a differential path until the last round. Then, one tries every possible
combination of keys and sees if it matches with the differential output of the last round. This process
is repeated until the keys from every round are found as explained by Heys [20]. The probability that
an input differential 𝛿𝑋 leads to a certain output differential 𝛿𝑌 is described as differential probabil-
ity. For an s-box, the differential probability can be found in the DDT through dividing the entry by
2𝑛. The biggest differential probability is denoted by the maximum differential probability (MDP).

▶ Definition 2.3 (MDP). Consider an 𝑛 × 𝑛 bit s-box. The MDP describes the biggest differential proba-
bility

𝑀𝐷𝑃 = 𝑚𝑎𝑥𝑣,𝑤≠0

{
|𝐷𝐷𝑇 (𝑣, 𝑤) |

2𝑛

}
,

where 𝐷𝐷𝑇 (𝑣, 𝑤) denotes the entry of the DDT in row v and column w.

Just like the MLP, the smaller the MDP is, the better is the security of the cipher. As the duality
of linear and differential cryptanalysis demands, there exists a differential branch number 𝑏𝐷 [1]
similar to the linear branch number.

▶ Definition 2.4 (Differential branch number). The differential branch number of a function or s-box 𝑓
is defined as

𝑏𝐷 = 𝑚𝑖𝑛𝑣,𝑣≠𝑤{𝑤𝑡(𝑣 ⊕ 𝑤) + 𝑤𝑡( 𝑓 (𝑣) ⊕ 𝑓 (𝑤))},

where 𝑤𝑡() denotes the hamming weight, in this context the sum of all nonzero bits.

Thus, the differential branch number is the smallest sum of the input and output differential bits
which are one, except for the cases where the input and output differentials contain no differences.
The differential branch number of our s-box is 𝑏𝐷 = 2. This can be verified easily by looking at the
DDT in Figure 2.3b. Again, the differential branch number is provided in the specifications of the
cipher.
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3 Obtaining Security Bounds using MILPs

In this chapter we answer the following questions: How can we use MILPs to calculate bounds? Why
do we even need bounds? And how does this relate to linear and differential cryptanalysis? Well,
when attacking with linear or differential cryptanalysis a path through the cipher is detected. The
attacker or cryptanalyst knows that there is a high chance that the bytes in this path are dependent of
each other. Every s-box contained in this path is considered an active s-box, since it plays a role in the
attack. The example cipher in the previous chapter was very small in order to simplify the principle
of the attacks, so the only s-box was obviously an active one. In a bigger cipher, a path through an
SPN could look like Figure 3.1, where the active s-boxes are colored in blue. In linear cryptanalysis,
an s-box is active if it is involved in a linear approximation. For differential cryptanalysis, the s-
box has to have a nonzero input difference in order to be considered active. In both contexts, the
approximations lead to a path through the cipher. The more active s-boxes are in a path, the harder
it is for the attacker to use cryptanalysis. This is why ciphers are designed to have paths that involve
many active s-boxes. Daemen and Rijndael designed AES with the ’wide trail design’ [16] so that the
paths in those attacks would be as wide as possible. Attackers, on the other hand, try to find a path
that uses the minimum number of active s-boxes.

For each cipher there is a specific number of how many active s-boxes are needed so that linear or
differential cryptanalysis become useless. In the following, we will call it the resistance bound. This
number can be calculated with the MDP/MLP, as we will see in this chapter. If the number of active
s-boxes is higher or equal to this resistance bound, the cipher is safe against the attack. Therefore,
it is crucial to determine how many active s-boxes our cipher minimally contains. This is because
the simple look at a cipher does not reveal how many s-boxes are active. In the following, we will
refer to the minimum number of active s-boxes in a cipher as the security bound. The security bound
is normally calculated for every number of rounds in a cipher. When we find that a cipher with a
specific amount of rounds has as many minimum active s-boxes as the resistance bound, we know
that the cipher is secure.

Mouha et al. calculate the security bound using MILPs. The objective is to minimize the number
of active s-boxes. The constraints consist of the operations in the cipher and how the linear masks or
differentials change. Since the output of one round is the input of the next round, if an output bit is
active (set to one), then the input bit of the next round is also active and therefore part of a path.

Note that is it irrelevant if the path through the s-box has a high or low probability of actually
happening. The MILP just looks for paths regardless of the precise specifications of the s-box. As an
example, consider a cipher with 𝑟 rounds and a resistance bound of 𝑥, i.e. it needs 𝑥 active s-boxes in
order to be resistant against the attack. Then, the security bound is calculated 𝑟 times with an MILP
for 1, ..., 𝑟 rounds. This can result for example in the fact that the smallest path using four rounds
has 𝑥 − 1 active s-boxes, but the smallest path with five rounds has at least 𝑥 active s-boxes, then the
cipher is resistant against the attack only with five or more rounds. Since such a path does not exist,
the attacker cannot find one with less than 𝑥 active s-boxes, and thus the attack becomes useless to
execute. Mouha et al. calculate exactly these security bounds in their paper for the ciphers AES and
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■ Figure 3.1. Example of a path through a cipher. The blue boxes describe an active s-box.
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Enocoro-128v2. By using MILPs, the authors discovered a fast method to compute these bounds. But,
since Mouha et al. are cryptanalysts, they put the generated MILP into a commercial solver without
considering that there are structures for MILPs that can potentially accelerate the computation. In
the next chapter, those generated MILPs will be analyzed to see if they have an inherent structure. But
first, the process of constructing the security bound MILPs for AES and Enocoro-128v2 is described.

3.1 Differential Cryptanalysis Bound for Enocoro-128v2

For this cipher, an idealized variant is considered where the s-box and linear function can map any
nonzero input difference to any nonzero output difference. Additionally, the branch number of the
linear function is set to three. The minimum number of active s-boxes will be a lower bound for
the real Enocoro-128v2. This is because Mouha et al. assume that the s-boxes in the cipher are in-
dependent as explained later, and also because of the idealized variant of the cipher. Therefore, it
could be that the cipher is resistant against the attack with a lower number of rounds than Mouha et
al. calculate, but this bound works in any case. For specifications about Enocoro-128v2, see Section
1.2.2 or the specification documents [21]. In one round, there are eight XOR operations and one linear
function, as can also be seen in Figure 3.2. These nine operations are later portrayed as constraints of
the MILP. We now go through the cipher with the difference vector and see how the active bits could
behave. Instead of the input bytes 𝑏1, 𝑏2, ..., 𝑏32 and 𝑎0, 𝑎1, we look directly at the difference vector
(𝑥0, 𝑥1, ..., 𝑥33) of the initial value, which consists of binary variables. It is constructed from two input
values in this way: Assuming 𝛿 = (𝛿0, 𝛿1, ..., 𝛿33) = (𝑏0 ⊕ 𝑏′0, 𝑏1 ⊕ 𝑏′1, ..., 𝑎1 ⊕ 𝑎′1) is the difference of two
input values, the difference vector is defined as 𝑥 = (𝑥0, 𝑥1, ..., 𝑥33) with

𝑥𝑖 =

{
0, if 𝛿𝑖 = 0

1, otherwise.

Thus, if in the difference of two bytes there is at least one bit different (one bit has value 1), the
corresponding difference variable 𝑥𝑖 will be set to 𝑥𝑖 = 1. The corresponding 𝑥𝑖 variables for the
bytes in the first round of Enocoro-128v2 with differential cryptanalysis are depicted in Figure 3.2 in
black.

We first look at the XOR operations. There, two bytes are XOR-ed, and we model the operation
with our difference variables and see how the path goes through the operation. If both difference
vectors are zero, then the difference of the output and therefore the new output difference vector is
zero, and there is no path. If one of them is zero and the other is one, then the output difference vector
is also one and there is a path. But, if the path is arriving from both sides, thus, both input difference
vectors are one, the difference output vector is zero, since the differences cancel each other out. The
path will stop there. By portraying this in the constraint of the MILP, the variables will be filled in
the most optimal way. A XOR operation, e.g. for the XOR at the top of the cipher with 𝑥31, 𝑥32 as input,
can be described as

𝑥31 + 𝑥32 + 𝑥34 ≥ 2𝑑0
𝑑0 ≥ 𝑥31

𝑑0 ≥ 𝑥32

𝑑0 ≥ 𝑥34.

The branch number is set to two in order to display the XOR operation correctly. Mouha et al. intro-
duce a dummy variable, which helps in modeling the XOR operation. This dummy variable, called
𝑑-variable, equals zero if all other values are zero, otherwise it takes the value one. To get an idea of
why this works, consider a XOR operation as in Figure 1.3a. Assume that 𝑥1, 𝑥2 are the inputs and 𝑥3
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■ Figure 3.2. Differential and linear state in the first round of Enocoro-128v2. The number refer to
the indices of the 𝑥-variables. The blue numbers depict the indices for the linear state whereas the
black numbers correspond to the differential state.

is the output, and 𝑥3 is the input for an s-box. Through previous rounds the variable 𝑥2 is set to 𝑥2 = 1.
Since the output of the XOR operation 𝑥3 is the input of an s-box, the MILP minimizes the value of 𝑥3.
Therefore, 𝑥1, 𝑥3 are set to 𝑥1 = 1 and 𝑥3 = 0 and the s-box will not be active.

The linear transformation is also portrayed through constraints. Since the branch number was
constricted to three we know that at least three input and output bits have to be active (except for
the all-zero case). To recall: we don’t look at the specific values of the linear transformation, we just
model the general behavior. Since we want to minimize the active bits, we want as many bits as
possible to have the value zero. So, by taking the branch number which is the minimum number of
active input and output bits, we are able to minimize the number of active bits while still having a
correct depiction of the linear function. Because at least three bits will be active if one bit is. This
linear transformation can be described as

𝑥35 + 𝑥36 + 𝑥37 + 𝑥38 ≥ 3𝑑1
𝑑1 ≥ 𝑥35

𝑑1 ≥ 𝑥36

𝑑1 ≥ 𝑥37

𝑑1 ≥ 𝑥38.

where (𝑥35, 𝑥36) is the input difference vector and (𝑥37, 𝑥38) is the output difference vector in the first
round. From now on, a constraint that contains the inputs and outputs of a function like the constraint
in the first row will be called long constraint. A short constraint then describes a constraint consisting
of a 𝑑-variable and an 𝑥-variable. The 𝑑-variable again equals zero if all variables are zero. Otherwise,
if there is at least one variable that is nonzero, then the path goes through the linear function. For
every round, there are eight XOR operations that have each four equations and one linear function
with five equations, thus 8 · 4 + 1 · 5 = 37 equations. Additionally, ten new 𝑥-variables and nine new
𝑑-variables are created in a round. Furthermore, a constraint is added in the end to ensure that in
the result there is at least one active s-box.

The objective function is the sum of the input difference of all s-boxes. In the first round for
example, the s-box input variables are 𝑥2, 𝑥7, 𝑥16 and 𝑥29. If the input difference is one, then the s-box
is active. Therefore, the sum of these variables has to be minimized. Consider 𝐷𝑖 to be the set of the
indices of all input variables of the s-boxes in round 𝑖.
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Then,
𝐷1 = {2, 7, 16, 29}

...

𝐷96 = {954, 941, 902, 863}.
And with

𝐼𝑁 =
⋃

1≤𝑖≤𝑁
𝐷𝑖 ,

the objective function can be described as

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
∑︁
𝑗∈𝐼𝑁

𝑥 𝑗 .

The last constraint that ensures that at least one s-box is active is∑︁
𝑗∈𝐼𝑁

𝑥 𝑗 ≥ 1.

If all variables are set to be binary, the program would be an ILP. We know that when an ILP and an
MILP have the same amount of variables, the MILP can be solved more efficiently since it contains less
integer variables. For this reason we transform the ILP into an MILP by setting only the 𝑑-variables
and the input variables of the first round to be binary values. The rest of the variables can take
any value. The resulting values will actually still be binary because they are created from the input
variables, which are binary. This way, we improve the efficiency of the problem but still have the
same result.

Mouha et al. have inserted the equation into an MILP solver and calculated for every number of
rounds the minimum number of active s-boxes. If there are 14 active s-boxes, the cipher is secure
against differential cryptanalysis. This can be calculated in the following way: The MDP, introduced
in Definition 2.3, for the Enocoro-128v2 s-box is 10

256 = 2log2 (
10
256 ) = 2−4.678 as Mouha et al. stated.

Since the initial value consists of 64 bits, there are 264 pairs for any certain difference (because every
value has exactly one value with which it reaches the difference). The number of required chosen
plaintexts for the attack is 1/𝑝 as described by Biham [2]. The variable 𝑝 denotes the probability
for the characteristic of the cipher, thus the overall probability for a path in a cipher. Because our
main goal is to be secure against attacks, we give the attacker the best advantages. In a realistic
attack, the cipher would not always behave in the worst case. But by assuming exactly this, we can
be absolutely safe that our calculations work in every case. Thus, we assume every active s-box takes
the MDP and calculate the overall probability 𝑝 by multiplying the MDP of all active s-boxes with
each other. Normally, the s-boxes are not independent, but if they would be, it would be easier for
the attacker. So, we give the attacker again the advantage and act as if the s-boxes are independent.
Then the overall probability is 𝑝 = 2−4.678𝑘𝑁 = 2−4.678𝑘𝑁 . In order for differential cryptanalysis to
work, 1/𝑝 = 24.678𝑘𝑁 chosen plaintexts are required. If the number of required chosen plaintexts
is larger than the number of possible inputs, the attack becomes useless because the attacker could
just brute-force the process. Therefore, in this case the cipher would be secure against differential
cryptanalysis,

24.678𝑘𝑁 ≥ 264,

and from this follows
𝑘𝑁 ≥ 64/4.678.

Thus, with 14 > 64/4.678 active s-boxes the cipher is resistant against differential cryptanalysis. When
calculating the MILP for every number of possible rounds, the conclusion is that with 38 rounds the
cipher is secure because the minimum number of active s-boxes is 14, as Mouha et al. stated. There
is not a path through this cipher which goes through less than 14 s-boxes in 38 rounds. In Chapter 4
we will see a detailed analysis of this differential cryptanalysis MILP.
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3.2 Linear Cryptanalysis Bound for Enocoro-128v2

Similar to differential cryptanalysis, we use an idealized variant of Enocoro-128v that has maximally
as many linear active s-boxes as the real cipher. Instead of the buffer (𝑏0, 𝑏1, ..., 𝑏31) and state (𝑎0, 𝑎1)
byte vectors, we consider the linear mask vector (𝑥0, 𝑥1, ..., 𝑥33) consisting of binary variables. As-
suming Γ = (Γ0, Γ1, ..., Γ33) is a linear mask of all 34 bytes, the linear mask vector is defined as
𝑥 = (𝑥0, 𝑥1, ..., 𝑥33) with

𝑥𝑖 =

{
0, if Γ𝑖 = 0

1, otherwise.

In other words, the vector indicates for every byte if at least one bit is ’active’ and therefore if the
byte is being used in the path for the attack. Now we want to model possible paths through the cipher
with a MILP. The indices for the 𝑥-variables corresponding to a byte can be found in Figure 3.2 in
blue.

This time, we don’t consider the XOR operations. This is because the input and output linear mask
vectors are always the same. To recall: the linear masks indicate which bits are ignored. So, when
XOR-ing two bytes, the result will not have impact on the output linear mask. The output linear mask
just indicates which bits to ignore, which are the same as in the input. Thus, the bits that describe
the input linear masks and output linear mask are equal. But, the three forked branch is relevant
in finding a path. Biham describes this ’phenomena’ as ’just the opposite to the usual operations in
the cryptosystem’ [3]. In differential cryptanalysis, we treated the three forked branches as ’duplica-
tions’, thus the input bit matches the two output bits, and the XOR operation was treated like a XOR
operation. Now, when describing these operations in the MILP, we treat the XOR operation as a three
forked branch: the input bit is just duplicated and equals the two output bits. The three forked branch
on the other hand is treated like a XOR operation and XORs the input bit with the original output bit
to form the second output bit. As illustrated in Figure 3.2, every three forked branch has an output
variable that already exists and one output variable that is new. This ’phenomena’ describes one
of the most significant differences in linear and differential cryptanalysis. As can be seen in Figure
1.3b, there are three variables for the three forked branch: one for the input and two for the output.
If the input bit is active, then at least one output bit has to be active too, because the path cannot end
abruptly. If the input bit is 0 and therefore not part of a path, the output bits will also be inactive. This
can be described with the following equations. The case where the input bit is zero, but both output
bits are one will be avoided because the MILP minimizes the number of active bits and therefore sets
the output bits to zero. Here, 𝑥31 is the input bit and 𝑥32 and 𝑥34 are the output bits. The following
inequalities describe the three forked branch that is at the top of the cipher in Figure 3.2.

𝑥31 + 𝑥32 + 𝑥34 ≥ 2𝑑0
𝑑0 ≥ 𝑥31

𝑑0 ≥ 𝑥32

𝑑0 ≥ 𝑥34.

The branch number is set to two. The 𝑑-variable is set to zero if every other variable is zero and
otherwise is set to one.

The minimal number of nonzero linear input and output masks for the linear function is three
when excluding the cases where every mask is zero. Thus, the linear branch number is three. So
now, when one bit in the linear mask vector of the input or output is active, we know that at least
two more variables have to take the value one. Of course, we do not know if the input/output linear
mask combination chosen with the equations is existing in real life, but this is not relevant for us.
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The important thing is to model a path through a cipher and see if an s-box is active, and not which
bits make the s-box active. The linear function in the first round can be portrayed with the following
constraints

𝑥34 + 𝑥33 + 𝑥35 + 𝑥36 ≥ 3𝑑1
𝑑1 ≥ 𝑥34

𝑑1 ≥ 𝑥33

𝑑1 ≥ 𝑥35

𝑑1 ≥ 𝑥36

where (𝑥34, 𝑥33) is the input vector and (𝑥35, 𝑥36) is the output vector. The 𝑑-variable is there to ensure
that at least three bits are active when at least one bit is active. In one round, the cipher has eight
three forked branches and one linear function. Thus, one round can be described with 8 · 4 + 1 · 5 =

37 equations. Since every three forked branch generates one new variable and the linear function
generates two new variables, there are ten new 𝑥-variables at the end of each round. Additionally,
nine new 𝑑-variables are created in a round. By summating every input linear mask variable of an
s-box together, one gets the objective function. To get the minimum number of active s-boxes, this
sum has to be minimized. In the first round, the input variables for the s-box are 𝑥34, 𝑥33, 𝑥35 and 𝑥36.
Let 𝐿𝑖 be the set of indices of s-box input variables for round 𝑖. Then,

𝐿1 = {34, 33, 35, 36}

...

𝐿96 = {984, 976, 985, 986}.

Using
𝐽𝑁 =

⋃
1≤𝑖≤𝑁

𝐿𝑖 ,

the objective function is defined as
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒

∑︁
𝑗∈ 𝐽𝑁

𝑥 𝑗 .

Analogue to the MILP for differential cryptanalysis, the 𝑑-variables and the input variables of the first
round are restricted to be binary, and the rest can take any value. The program is thus an MILP, but
every variable automatically takes a binary value. To extract the required number of active s-boxes
to be resistant against linear cryptanalysis, the resistance bound, Matsuis Piling-up Lemma [27] is
needed:

▶ Lemma 3.1 (Piling-up Lemma, 1993). Assuming there are n independent random binary variables
𝑋1, 𝑋2, ..., 𝑋𝑛 that take the value 0 with probability 𝑝𝑖 , the probability that 𝑋1 ⊕ 𝑋2 ⊕ ... ⊕ 𝑋𝑛 = 0 equals

𝑃𝑟(𝑋1 ⊕ 𝑋2 ⊕ ... ⊕ 𝑋𝑛 = 0) = 1/2 + 2𝑛−1
𝑛∏
𝑖=1

(𝑝𝑖 − 1/2)

and since the bias 𝜖 = 𝑝 − 1/2,

𝜖 = 2𝑛−1
𝑛∏
𝑖=1

𝜖𝑖

and 𝜖 is the bias of the equation 𝑋1 ⊕ 𝑋2 ⊕ ... ⊕ 𝑋𝑛 = 0.

In our case, the random binary variables 𝑋1, 𝑋2, ..., 𝑋𝑛 will represent the linear approximation of
the s-boxes. Thus, the linear expression for the cipher holds true with a bias of 𝜖. For the s-box in
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Enocoro-128v2 the MLP is 2−3. The MLP was stated in Definition 2.1. Assuming that every s-box takes
the worst approximation, the bias is 𝜖𝑖 = 2−3 for every s-box 𝑖 ∈ 𝑛. This is because the MLP is already
the deviation of the probability from 1/2 so the MLP is already the bias. Consider 𝑎 as the number of
active s-boxes, then the overall bias 𝜖 is 2𝑎−1 · (2−3)𝑎. This only works under the assumption that the
approximations of the s-boxes are independent, which is not exactly true, but the calculations are
sufficiently correct in practice. According to Matsui [27], to attack with linear cryptanalysis approx-
imately 𝜖−2 known plaintexts are needed. This is because the number of required plaintexts 𝑁𝐿 is
proportional to 𝜖−2, 𝑁𝐿 ≈ 1

𝜖2
. Consequently, if the attacker has 𝑁𝐿 plaintexts, linear cryptanalysis can

be applied. There exist 264 different plaintexts for Enocoro-128v2, as the number of IVs is limited to
64 bits. Every bit can take the value 0 or 1, thus two values, and these possibilities exist 64 times, thus
264. If more than 264 known plaintexts are needed, the attacker could also find the key by brute force,
since they have every single plaintext. Using linear cryptanalysis would become obsolete. Thus, in
order to be resistant against the attack, we want

𝜖−2 > 264,

with our bias
(2𝑎−1 · (2−3)𝑎)−2 > 264,

and subsequently
𝑎 > 15.5 .

It follows that the cipher is secure against linear cryptanalysis if there are at least 16 active s-boxes.
Calculating the MILP with every number of rounds, Mouha et al. find that with 61 rounds, the mini-
mum number of linearly active s-boxes is 18 (for 60 rounds it is 15). A detailed analysis of this linear
cryptanalysis MILP follows in Chapter 4.

3.3 Linear and Differential Cryptanalysis Bound for AES

For the cipher AES the MILPs for linear and differential cryptanalysis are equivalent. This is because
there is no three forked branch or XOR operation in the cipher that regards the state variables and
not the key variables. The linear as well as the differential branch number for the MixColumns()
operation is five, as stated by Daemen and Rijmen [15]. The MixColumns() operation is also called
linear function.

In the beginning, the 128 bits are saved in a 4 × 4 array and every entry consists of one byte. For
the MILP modeling, the array consists of 16 variables which describe the linear mask or difference of
the byte. If the linear mask consists of at least one bit that has taken the value one or the differential
has at least one bit that contains a difference, then the value of the 𝑥-variable is one.

The first step in a round is AddRoundKey(), but since this does not change the differential vector
nor the linear mask vector, it is not relevant for the MILP. In differential cryptanalysis, two keys that
are the same are added to the differential. The XOR-sum of the keys will be zero, since they cancel
each other out. Thus, AddRoundKey() is not relevant. For linear cryptanalysis, the adding of the round
key will not change which bits have to be ignored and which bits are active. Therefore, the linear
mask will not differ after the AddRoundKey() operation.

In the SubBytes() step, each byte is put into the s-box, and if the value of the corresponding 𝑥-
variable is one then the s-box is active and otherwise not. We want to minimize the number of active
s-boxes, thus we want as many variables as possible to take the value 𝑥𝑖 = 0. This is reflected in the
objective function. Contrary to the Enocoro-128v2 cipher, every byte from the state array in every
round will be going through the s-box, except for the new bytes in the last round. In the permutation
layer, the variables are first shifted with ShiftRows(). The values of the variables stay the same, but
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the state array is updated. Since they do not change value, the operation is not described in the
constraint matrix. The state array changes and the following operations are executed with the new
order of variables.

In the MixColumns() operation, every column is multiplied with a certain matrix. This is a linear
function with four input and four output variables. The output variables are new variables that
are the input for the next round. We know from the specifications that the branch number is five.
Therefore, if one variable is active, at least four other variables are active too. More variables could
be active, but in the minimum case five variables have to be active (except when no variable is active).
Since the goal is to minimize the overall number of active variables, we take the branch number as
the bound if at least one variable is active. The MixColumns() operation is described as

𝑥0 + 𝑥5 + 𝑥10 + 𝑥15 + 𝑥16 + 𝑥17 + 𝑥18 + 𝑥19 ≥ 5𝑑0
𝑑0 ≥ 𝑥0

𝑑0 ≥ 𝑥5

𝑑0 ≥ 𝑥10

𝑑0 ≥ 𝑥15

𝑑0 ≥ 𝑥16

𝑑0 ≥ 𝑥17

𝑑0 ≥ 𝑥18

𝑑0 ≥ 𝑥19

where 𝑥0, 𝑥5, 𝑥10, 𝑥15 are the input variables (thus the values of the column that will be multiplied)
and 𝑥16, 𝑥17, 𝑥18, 𝑥19 are the new variables that result from the multiplication. The 𝑑-variable equals
zero if every variable is also zero, otherwise it is one. For each round, 16 new 𝑥-variables and four
new 𝑑-variables are created.

The objective function is the sum of the input variables of each s-box. Since in every round, every
input variable in the matrix is put into an s-box, each 𝑥-variable (except the new variables of the last
round) is in the objective function. For 𝑁 rounds, it looks like this:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
16𝑁∑︁
𝑖=1

𝑥𝑖 .

As with the MILP for Enocoro-128v2, a single equation is needed in order to exclude the trivial solu-
tion of no active s-boxes. This constraint has the following form:

16𝑁∑︁
𝑖=1

𝑥𝑖 ≥ 1.

In one round there are 9 · 4 constraints, thus for 𝑁 rounds there are 36𝑁 + 1 constraints. In order
to get an MILP, the first input variables (𝑥0, ..., 𝑥15) and all 𝑑-variables (𝑑0, ..., 𝑑4𝑟−1) are restricted to
be binary, the rest is free. By doing this, we increase the efficiency, but all variables still take binary
values.

Daemen and Rijmen [15] proved that the minimum number of s-boxes in a linear or differential
cryptanalysis setting when doing four rounds is 25. Using the MILP created by Mouha et al., and
calculating the minimum number of s-boxes, the result is the same. In Chapter 4 this MILP is analyzed
and a new-found structure is presented in detail.
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4 Analysis of Security Bound MILPs

After establishing how security bound MILPs are constructed in Chapter 3, we will describe how we
analyzed them with a Python framework and present the newly revealed structures of the differential
and linear cryptanalysis MILPs in this chapter.

4.1 Python Framework for Blockstructured Analysis

The framework computes the constraints and visualizes the constraint matrix of the MILP. It can
generate the constraints for the block cipher AES and the stream cipher Enocoro-128v2 in the differ-
ential and linear cryptanalysis setting. But the most important part is the modular structure. This
way, the framework can not only generate the constraint matrix for two ciphers, but for any other
cipher. One just has to add a class, and the other parts of the code do the rest. Furthermore, there are
functions to alter the structure of the constraint matrix. Finally, the visualizations are portrayed as a
plot or in a PDF file. The modular structure can be seen in Figure 4.1. This structure allows to easily
add or modify functionalities. Below, a description for each file can be found.

cipher.py

The file cipher.py contains a class for each cipher and mode of attack. Two classes for differential
and linear cryptanalysis in Enocoro-128v2, and a class for AES, which is used for both cryptanalysis
types. Every class has the same functions that differ in their way to generate the matrix. In initialize()
an empty matrix with the right size dependent of the number of rounds is initialized and the initial
variables are set. input_sbox() returns a list with all variables that are the input to an s-box. This
is needed for the constraint that ensures that at least one s-box is active. There are functions that
are used if the values in the cipher shift before or after a round (shift_before, shift_after). For every
cipher operation (e.g. XOR, three forked branch or linear function) there is one long constraint that
describes it and then for each variable in it a constraint with just the 𝑑-variable. gen_long_constraint()
generates this first long constraint. The small constraints with the 𝑑-variables are constructed in the
same way for every cipher, thus they are generated in another file (since it is not cipher- or attack-
specific). If one wants to use the code for another cipher or attack, they would have to add a new
class in this file. The visualization and sorting of the matrix will work immediately.

generateConstraints.py

Using the functions of cipher.py, the filegenerateConstraints.py creates the memory representa-
tion for constraint matrix of the MILP. Given a cipher and mode of attack, new_generate_constraints()
returns the matrix and the corresponding vector. After initializing the empty matrix, the code goes
through every round to fill in the entries. If necessary, it shifts the position of the values before or
after a round. In between, it generates the long constraint for every operation. The function gener-
ate_smallconstraints() constructs the small constraints that consist of just the 𝑑-variable and a vari-
able from the long constraint. The constraints are constructed in a slightly different manner than in



cipher.py
Classes for ciphers that contain func-
tions to generate the structures for the
specific cipher and attack.

generateConstraints.py
Generates the constraint matrix of the
MILP for the requested cipher and at-
tack.

visualization.py
Shows either the constraint matrix as
a plot or generates a pdf with the con-
straints.

sortingFunctions.py
Functions to change the structure of the
matrix.

main.py
Given a cipher, an attack, number of
rounds and desired mode of visualiza-
tion, this file returns the final product.

gen_pdf(3,AES)

d_var_to_beginning()
long_constraints_to_top()
create_fourblock()

new_generate_constraints(3,AES)

AES.initialize(3)
AES.shift_before(A)
AES.rangenumber(A)
AES.gen_long_constraint()
AES.shift_after(A)

main(3,AES,pdf)

■ Figure 4.1. Python framework for generating and analyzing constraint matrices of MILPs that
find the minimum number of active s-boxes in a cipher given a certain attack. Along the arrows an
example call for AES with three rounds and PDF visualization can be found.
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a. native Matrix b. d_var_to_beginning() c. long_constraints_to_top() d. creating
_diagonal_in4block()

■ Figure 4.2. Example for the sorting functions. The subfigures show the structure of the matrix
when the corresponding function is applied to the matrix in the subfigure before. Every non-white
entry describes a nonzero entry.

the previous chapter. The difference is that the right-hand side of the equation is changed to be an
all-zero vector. Thus, from 𝑥1 + 𝑥2 + 𝑥3 ≥ 2𝑑0 follows the constraint −2𝑑0 + 𝑥1 + 𝑥2 + 𝑥3 ≥ 0 and a
short constraint 𝑑0 ≥ 𝑥1 transforms into 𝑑0 − 𝑥1 ≥ 0. Additionally, for the constraint that ensures
that at least one s-box is active, we introduce a new constant 𝑙 in the solution vector. Mouha et al.
set this constraint to e.g. 𝑥2 + 𝑥4 + 𝑥6 ≥ 1 when 𝑥2, 𝑥4, 𝑥6 are the input variables to all the s-boxes
in the cipher. In order to get a zero on the right-hand side, we would now transform the constraint
into −1 + 𝑥2 + 𝑥4 + 𝑥6 ≥ 0. To portray this integer on the left side when having the constraints dis-
played in a constraint matrix, we introduce the constant 𝑙 = 1. Then, the constraint looks like this
−1 · 1 + 𝑥2 + 𝑥4 + 𝑥6 ≥ 0, and we have an additional entry in the solution vector.

sortingFunctions.py

Now that the representation of the constraint matrix in memory is created, it is still unstructured and
convoluted, since it was generated on a round-basis. The functions in the sortingFunctions.py file
are able to reveal the structures of the matrices. The functions permutate_rows(), permutate_columns()
permutate the rows or columns of the matrix in a specific given order. Since the 𝑑-variables are newly
generated in each round, they are scattered troughout the columns. With d_var_to_beginning() the
columns corresponding to the 𝑑-variables are at the beginning of the matrix which then has a clearer
structure. This function is used to get the stair-fold structure. Then, long_constraints_to_top() permu-
tates the long constraints to the top rows. As a result there is a block on the top rows and the rest
of the matrix is sparse. The function creating_diagonal_in4block() then tries to find a diagonal that
goes through the matrix by permutating the rows. This helps in getting a 4-block structure, if there
is one. In Figure 4.2 these functions are applied subsequently to an example and one can see how in
the end the 4-block structure is built. The function create_fourblock() combines the three functions.
Given a freshly generated matrix, the function permutates the columns for the 𝑑-variables to the left,
the rows for the long constraints to the top and creates the diagonal.

visualization.py

In the file visualization.py the results are visualized. One can either generate a PDF or a detailed
version of the matrices. The detailed version generates four representations of the same matrix. It
shows the nonzero entries in order to depict the structure more clearly. They are generated with
Matplot. The PDF contains the Matplot plots and then all constraints that describe the matrix. The
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function constraints() takes the matrix and the vector and translates it into LATEXcode.

main.py

Finally, the main.pyfile provides a way to easily generate the constraint matrix for the wanted cipher
and attack. An example call for the cipher AES with 3 rounds visualized in a PDF can be found in Fig-
ure 4.1. After giving as input the number of rounds, cipher and mode of visualization, the function
main() calls the function gen_pdf() in the visualization.py file. In this function, the constraints are
first generated with new_generate_constraints() in generateConstraints.py which calls the func-
tions of the class AES in the cipher.py file. Then, the sorting functions from sortingFunctions.py
are applied to the matrix. The resulting matrices are then put in the PDF file which is the output of
the main function.

4.2 Stair-Fold MILP for Enocoro-128v2

Since Enocoro-128v2 is a very secure cipher [18, 11], it has a high diffusion. For example, the variables
used in one round are not only the ones from the last round like in AES, but also from the rounds
that came before. Therefore it is difficult to find a matrix structure like 4-block where the blocks are
independent from each other. Though, the MILP can take the stair-fold structure defined in 1.3. The
stair-fold structure allows the blocks to be dependent of each other. This section will give a description
for the matrix without having to go through every operation in the cipher again. This is an advantage
because it reduces the intricacy and allows one to focus on the MILP instead of the cryptanalysis.
To see how the stair-fold structure was achieved, consider Figure 4.3, where the constraint matrix
structure for the linear cryptanalysis MILP of Enocoro-128v2 cipher with fifteen rounds is shown. The
native matrix is depicted in Figure 4.3a. Then, with the help of our sorting functions, the columns
corresponding to the 𝑑-variables are permutated to the beginning of the matrix and the last constraint
was rearranged into the first row. This stair-fold structure becomes clear in Figure 4.3c, where the
outline of the blocks is added. The matrix is still round-based, so the blocks correspond to a round.
There are three types of blocks in the matrix, depicted in Theorem 4.1.

▶ Theorem 4.1 (Stair-fold MILP for Enocoro-128v2). Let 𝑟 be the number of rounds. The MILP for
Enocoro-128v2 has a stair-fold structure, i.e. we have
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≥ 0,

where the constraint matrix has dimension (37𝑟 + 1) × (19𝑟 + 35) and 𝐴𝑖,𝑝 ∈ Z37×9 for 𝑖 = {1, ..., 𝑟},
𝐶1 ∈ Z1×1, 𝐶2,𝑝 ∈ Z1×34+10𝑟 and 𝐵𝑖,𝑝 ∈ Z37×34+10𝑖 for 𝑖 = {1, ...12 + 𝑞} and 𝐵𝑖,𝑝 ∈ Z37×123+ 19

3 𝑞 for
𝑖 = {13 + 𝑞, ..., 𝑟}. Further, we have 𝑑𝑘 , 𝑥 𝑗 ∈ {0, 1} for 𝑘 = {0, ..., 9𝑟 − 1} and 𝑗 = {0, ..., 33} and 𝑥 𝑗 ∈
R for 𝑗 = {34, ..., 33 + 10𝑟}. The variables 𝑝, 𝑞 depend on the attack.
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a. native Matrix b. sorted matrix c. stair-fold structure

■ Figure 4.3. Constraint matrix for the linear cryptanalysis MILP for 15 rounds in the cipher
Enocoro-128v2. Every non-white entry is a nonzero entry in the matrix. The 𝐶-block was enhanced
in order to make it visible.

The 𝐴-blocks describe the 𝑑-variables, the 𝐵-blocks the 𝑥-variables and the𝐶-blocks correspond to
the constant 𝑙 = 1 and the 𝑥-variables. The 𝑑-variables and the variables that are the input to the first
round have to take binary values. The rest of the variables have no restrictions. In the matrix, there
are 𝑟 𝐴- and 𝐵-blocks and the blocks 𝐴𝑖,𝑝, 𝐵𝑖,𝑝 describe the round 𝑖. The blocks 𝐶1 and 𝐶2,𝑝 construct
the first row which describes the constraint that ensures that at least one s-box is active. A description
for every type of block follows.

▶ Corollary 4.2 (𝐴-blocks). The 𝐴𝑖,𝑝-blocks have the following form
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where 𝑅 describes a XOR operation or three forked branch, 𝐹 describes the linear function. For an entry
𝑦 of matrix 𝐴𝑖,𝑝 holds 𝑦 ∈ {−3, 1}.

▶ Corollary 4.3 (𝐵-blocks). The 𝐵𝑖,𝑝-blocks are constructed in the following way

𝐵𝑖,𝑝 =
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with the submatrices𝑇𝑘,𝑖,𝑝 that describe the three forked branch or XOR operation. The submatrices 𝐿𝑖,𝑝
have the form

𝐿𝑖,𝑝 =

©«

1 1 1 1
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−1

−1

10𝑖+42−6𝑝︷︸︸︷ −3.5(𝑝−3)︷︸︸︷ 8−𝑝︷︸︸︷
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where the submatrix with 𝑝 = 1 and for the first round 𝐿1,1 has a different form. For an entry 𝑦 of matrix
𝐵𝑖,𝑝 holds 𝑦 ∈ {−1, 1}.

▶ Corollary 4.4 (𝐶-blocks). The two 𝐶-blocks 𝐶1 and 𝐶2,𝑝 have the following form

𝐶1 =
(
−1

)
𝐶2,𝑝 =

( · · ·
1 1 1 1 1 1 1 1
𝑑1,𝑝 𝑒1,𝑝 𝑓1,𝑝 𝑔1,𝑝 𝑑𝑟,𝑝 𝑒𝑟,𝑝 𝑓𝑟,𝑝 𝑔𝑟,𝑝 )

where every entry in the 𝐶2,𝑝-block describes a variable that is the input to an s-box. For an entry 𝑦 of
matrix 𝐶2,𝑝 holds 𝑦 ∈ {0, 1}.

4.2.1 Differential Cryptanalysis Stair-Fold MILP for Enocoro-128v2

The stair-fold MILP for differential cryptanalysis can be generated using the Theorem 4.1. The vari-
ables 𝑝, 𝑞 have to be set to 𝑝 = 𝑞 = 3. Each block can then be constructed with the following details:

Block A

The blocks 𝐴𝑖,3 depicted in Corollary 4.2 describe the part of the constraints where the 𝑑-variable is
used. There are 𝑟 blocks, and 𝐴𝑖,3 then denotes the block for round 𝑖 in differential cryptanalysis.
All variables corresponding to the 𝐴𝑖,3-blocks have to take a binary value. As explained earlier, a
XOR operation needs four constraints and a linear function needs five. Since there are eight XOR
operations and one linear function in a round, the blocks consist of 37 rows. The dimension of an
𝐴𝑖,3-block is 37 × 9. The constraints of an operation consist of the long constraint where the sum of
the 𝑥-variables has to be greater or equal to the 𝑑-variable times the branch number and the short
constraints where an 𝑥-variable has to be greater or equal to the 𝑑-variable. Therefore the entries of
the block are the branch number (−2 or −3) for the long constraint and one for the short constraints.
To simplify the visualization, we introduce submatrices for the blocks: 𝑅, which describes the entries
for a XOR operation and 𝐹 which describes the entries for a linear function.

Block B

The 𝐵-blocks define the values corresponding to the 𝑥-variables in the matrix. There are 𝑟 𝐵-blocks,
one for each round. In Corollary 4.3 the 𝐵𝑖,3-blocks are depicted for differential cryptanalysis. The
blocks up until the 15th round consist of 10𝑖 + 34 columns and 37 rows. From the 16th round, the
blocks have the dimension 142× 37. The variables belonging to the first 34 columns in the 𝐵1,3-block
have to take binary values. The rest of the variables is free. Each constraint and therefore row belongs
to a certain operation in the cipher. Just like in the 𝐴-blocks, we have four rows belonging to a XOR
operation and five rows belonging to a linear function. The first row for an operation describes the
long constraint, thus it has three entries for a XOR operation and four entries for the linear function.
The rows following this first row describe the short constraints and thus have one entry. Because
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𝑚1,𝑖,3 =

{
33 − 𝑖, if 𝑖 <= 15

43 + 10 · (𝑖 − 16) − 𝑧𝑖 , otherwise

𝑛1,𝑖,3 =

{
33, if 𝑖 <= 1

20 + 10𝑖 − 𝑧𝑖 , otherwise

𝑜1,𝑖,3 = 25 + 10𝑖 − 𝑧𝑖

a. first XOR operation

𝑚2,𝑖,3 =

{
4 − 𝑖, if 𝑖 <= 3

44 + 10 · (𝑖 − 4) − 𝑧𝑖 , otherwise

𝑛2,𝑖,3 =

{
33, if 𝑖 <= 1

20 + 10𝑖 − 𝑧𝑖 , otherwise

𝑜2,𝑖,3 = 26 + 10𝑖 − 𝑧𝑖

b. second XOR operation

𝑚3,𝑖,3 =

{
9 − 𝑖, if 𝑖 <= 5

42 + 10 · (𝑖 − 6) − 𝑧𝑖 , otherwise

𝑛3,𝑖,3 =

{
34, if 𝑖 <= 1

21 + 10𝑖 − 𝑧𝑖 , otherwise

𝑜3,𝑖,3 = 27 + 10𝑖 − 𝑧𝑖

c. third XOR operation

𝑚4,𝑖,3 =

{
18 − 𝑖, if 𝑖 <= 9

43 + 10 · (𝑖 − 10) − 𝑧𝑖 , otherwise

𝑛4,𝑖,3 = 28 + 10𝑖 − 𝑧𝑖
𝑜4,𝑖,3 = 30 + 10𝑖 − 𝑧𝑖

d. fourth XOR operation

𝑚5,𝑖,3 =

{
31 − 𝑖, if 𝑖 <= 13

44 + 10 · (𝑖 − 14) − 𝑧𝑖 , otherwise

𝑛5,𝑖,3 = 29 + 10𝑖 − 𝑧𝑖
𝑜5,𝑖,3 = 31 + 10𝑖 − 𝑧𝑖

e. fifth XOR operation

𝑚6,𝑖,3 =

{
4 − 𝑖, if 𝑖 <= 3

35 + 10 · (𝑖 − 1) − 𝑧𝑖 , otherwise

𝑛6,𝑖,3 =

{
8 − 𝑖, if 𝑖 <= 4

42 + 10 · (𝑖 − 1) − 𝑧𝑖 , otherwise

𝑜6,𝑖,3 = 32 + 10𝑖 − 𝑧𝑖

f. sixth XOR operation

𝑚7,𝑖,3 =

{
9 − 𝑖, if 𝑖 <= 5

42 + 10 · (𝑖 − 1) − 𝑧𝑖 , otherwise

𝑛7,𝑖,3 =

{
17 − 𝑖, if 𝑖 <= 8

43 + 10 · (𝑖 − 1) − 𝑧𝑖 , otherwise

𝑜7,𝑖,3 = 33 + 10𝑖 − 𝑧𝑖

g. seventh XOR operation

𝑚8,𝑖,3 =

{
18 − 𝑖, if 𝑖 <= 9

43 + 10 · (𝑖 − 1) − 𝑧𝑖 , otherwise

𝑛8,𝑖,3 =

{
30 − 𝑖, if 𝑖 <= 12

44 + 10 · (𝑖 − 1) − 𝑧𝑖 , otherwise

𝑜8,𝑖,3 = 34 + 10𝑖 − 𝑧𝑖

h. eighth XOR operation

■ Figure 4.4. Positions of the entries for each round and XOR operations for 𝑇𝑘,𝑖,3, a subblock of 𝐵𝑖,3

𝑑𝑖,3 =

{
2 − 𝑖, if 𝑖 <= 2

34 + 10 · (𝑖 − 3), otherwise
𝑒𝑖,3 =

{
7 − 𝑖, if 𝑖 <= 4

41 + 10 · (𝑖 − 5), otherwise

𝑓𝑖,3 =

{
16 − 𝑖, if 𝑖 <= 8

42 + 10 · (𝑖 − 9), otherwise
𝑔𝑖,3 =

{
29 − 𝑖, if 𝑖 <= 12

43 + 10 · (𝑖 − 13), otherwise

■ Figure 4.5. Positions of entries in the 𝐶2,3-block for differential cryptanalysis
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every operation uses different variables in the state, we introduce submatrices for each operation.
The subblock 𝐿𝑖,3 corresponds to the linear function. For the subblock 𝑇𝑘,𝑖,3 that describes a XOR
operation the position of the entries are displayed in Figure 4.4. There are eight different subblocks
for the eight different XOR operations. For the 𝑘-th XOR operation of the 𝑖-th round, 𝑚𝑘,𝑖,3 and 𝑛𝑘,𝑖,3
describe the positions of the entries for the two input variables and 𝑜𝑘,𝑖,3 the position for the output
variable entry. Until the 15th round, there is not a specific structure that repeats itself. This is because
only after 16 rounds every variable from the state in the first round will be replaced. Thus, the width
is 10𝑖 + 34 for the first 15 rounds. Beginning from the 16th round, one can see a structure. The blocks
then have a fixed size of 142 columns and they form a diagonal with blocks that overlap, since they
are not independent from each other. Then, for every round with 𝑖 ≥ 16 there is an empty matrix
037×43+10(𝑖−16) before the block 𝐵𝑖,3. Because of this, the positions of the entries are also dependent of
the variable 𝑧𝑖 which has the value 𝑧𝑖 = 0 for 𝑖 ≤ 15 and the value 𝑧𝑖 = 43 + 10(𝑖 − 16) for 𝑖 ≥ 16. For
every round, right after a 𝐵𝑖,3-block follows an empty matrix 037×10(𝑟−𝑖 ) .

Block C

The 𝐶-block consists of one row. This row describes the constraint that ensures that at least one s-box
is active. It is split into two blocks, 𝐶1 and 𝐶2,3 and is described in Corollary 4.4. The block 𝐶1 consists
of one entry, and has the value −1. This entry corresponds to the column that describes the constant
𝑙 = 1 so that the value in the equation is −1 · 1. The sum of all input variables of the s-boxes has to
be therefore greater than or equal to one. The 𝐶2,3-block consists of all variables that are the input to
an s-box and has dimensions 1 × 34 + 10𝑟. In Figure 4.5, the positions of the entries for the 𝐶2,3-block
are noted.

4.2.2 Linear Cryptanalysis Stair-Fold MILP for Enocoro-128v2

As determined in Chapter 3.2, the linear cryptanalysis MILP is similar to the MILP for differential
cryptanalysis. The difference lies in the XOR operations that do not have to be analyzed separately.
Instead, the three forked branches have to be considered, but they behave like XOR operations. Again,
the matrix will be described in a way so that it can be generated without having to go through every
operation. The matrix is depicted in Theorem 4.1 with the variables 𝑞, 𝑝 set to 𝑞 = 0 and 𝑝 = 1.

Block A

The 𝐴-blocks describe the part of the 𝑑-variables for the corresponding constraint. They all have to
take binary values. The description of an 𝐴𝑖,1-block can be found in Corollary 4.2. Since nine oper-
ations are considered in one round, we can split the blocks into nine submatrices. The submatrices
consist of the 𝑑-variable part of the long constraint and corresponding short constraints. The matrix
𝐹 describes the 𝑑-variables for the linear function and 𝑅 the 𝑑-variables for the three forked branch.
An 𝐴-block for linear cryptanalysis 𝐴𝑖,1 has the dimensions 37 × 9.

Block B

The 𝐵-blocks also have a height of 37, but differ in their width. The variables corresponding to the first
34 columns of the 𝐵1,1-block have to take binary values, and the rest of the variables corresponding to
a 𝐵𝑖,1-block are free. After a 𝐵𝑖,1-block follows an empty matrix 037×10(𝑟−𝑖 ) . Because the variables from
the first round are used until the 12th round, the blocks do not have the same structure until round
13. There are subblocks for the nine operations in one round, depicted in Corollary 4.3. The subblock
for the linear function 𝐿𝑖,1 has a similar structure as in differential cryptanalysis, but the structure for
the first and the rest of the rounds differ. The first two non-empty columns of 𝐿𝑖,1 describe the input
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𝑚1,𝑖,1 =

{
33 − 𝑖, if 𝑖 <= 2

44 + 10 · (𝑖 − 3) − 𝑧𝑖 , otherwise

𝑛1,𝑖,1 =

{
33, if 𝑖 <= 1

16 + 10𝑖 − 𝑧𝑖 , otherwise

𝑜1,𝑖,1 = 25 + 10𝑖 − 𝑧𝑖

a. first three forked branch

𝑚2,𝑖,1 =


4 − 𝑖, if 𝑖 <= 3

36 − 𝑖, if 𝑖 = 4, 5

44 + 10 · (𝑖 − 6) − 𝑧𝑖 , otherwise

𝑛2,𝑖,1 = 25 + 10𝑖 − 𝑧𝑖
𝑜2,𝑖,1 = 28 + 10𝑖 − 𝑧𝑖

b. second three forked branch

𝑚3,𝑖,1 =

{
8 − 𝑖, if 𝑖 <= 4

38 + 10 · (𝑖 − 5) − 𝑧𝑖 , otherwise

𝑛3,𝑖,1 = 28 + 10𝑖 − 𝑧𝑖
𝑜3,𝑖,1 = 29 + 10𝑖 − 𝑧𝑖

c. third three forked branch

𝑚4,𝑖,1 =

{
8, if 𝑖 = 1

37 + 10 · (𝑖 − 2) − 𝑧𝑖 , otherwise

𝑛4,𝑖,1 =

{
34, if 𝑖 = 1

39 + 10 · (𝑖 − 2) − 𝑧𝑖 , otherwise

𝑜4,𝑖,1 = 30 + 10𝑖 − 𝑧𝑖

d. fourth three forked branch

𝑚5,𝑖,1 =

{
17 − 𝑖, if 𝑖 <= 8

40 + 10 · (𝑖 − 9) − 𝑧𝑖 , otherwise

𝑛5,𝑖,1 = 30 + 10𝑖 − 𝑧𝑖
𝑜5,𝑖,1 = 31 + 10𝑖 − 𝑧𝑖

e. fifth three forked branch

𝑚6,𝑖,1 =

{
17, if 𝑖 = 1

41 + 10 · (𝑖 − 2) − 𝑧𝑖 , otherwise

𝑛6,𝑖,1 = 36 + 10 · (𝑖 − 1) − 𝑧𝑖
𝑜6,𝑖,1 = 32 + 10𝑖 − 𝑧𝑖

f. sixth three forked branch

𝑚7,𝑖,1 =

{
30 − 𝑖, if 𝑖 <= 12

42 + 10 · (𝑖 − 13) − 𝑧𝑖 , otherwise

𝑛7,𝑖,1 = 42 + 10 · (𝑖 − 1) − 𝑧𝑖
𝑜7,𝑖,1 = 33 + 10𝑖 − 𝑧𝑖

g. seventh three forked branch

𝑚8,𝑖,1 =

{
30, if 𝑖 = 1

43 + 10 · (𝑖 − 1) − 𝑧𝑖 , otherwise

𝑛8,𝑖,1 = 37 + 10 · (𝑖 − 1) − 𝑧𝑖
𝑜8,𝑖,1 = 34 + 10𝑖 − 𝑧𝑖

h. eighth three forked branch

■ Figure 4.6. Positions of entries for each three forked branch in round 𝑖 for 𝑇𝑘,𝑖,1, subblock of 𝐵𝑖,1

𝑑𝑖,1 = 35 + 10 · (𝑖 − 1) 𝑒𝑖,1 =

{
34, if 𝑖 = 1

37 + 10 · (𝑖 − 2), otherwise

𝑓𝑖,1 = 36 + 10 · (𝑖 − 1) 𝑔𝑖,1 = 37 + 10 · (𝑖 − 1)

■ Figure 4.7. Positions of entries in the 𝐶2,1-block for linear cryptanalysis
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for the linear function and the last two describe the output variables. The subblocks for the three
forked branches are again described by the position of their entries in Figure 4.6. Since the three
forked branch has one in- and two outputs, the first column in 𝑇𝑘,𝑖,1 describes the input variable at
position 𝑚𝑘,𝑖,1 and the last two columns describe the outputs in position 𝑛𝑘,𝑖,1 and 𝑜𝑘,𝑖,1. Up until the
12th round, the blocks have a width of 10𝑖 + 34. From the 13th round, they have a fixed width of
123 and an empty matrix 037×41+10(𝑖−13) before them. Because of this, the positions of the entries are
dependent of the variable 𝑧𝑖 which has the value 𝑧𝑖 = 0 for 𝑖 ≤ 12 and the value 𝑧𝑖 = 41 + 10(𝑖 − 13)
for 𝑖 ≥ 13.

Block C

The𝐶-block describes the constraint that ensures that at least one s-box is active. Therefore, it consists
of one row. As one can see in Corollary 4.4, it is split into two blocks. The 𝐶1-block consists of one
entry that corresponds the constant 𝑙 = 1 and has the value -1. The 𝐶2,1-block has an entry for every
variable that is at some point the input to an s-box in the cipher. It has the dimensions 1×34+10𝑟. The
Figure 4.7 describes the position of the four variables that are the input to an s-box in each round.

This description of the linear and differential cryptanalysis MILPs makes it easier to generate them, as
it does not require a deep understanding of the cipher. The MILPs take the novel stair-fold structure,
introduced in Chapter 1. If an efficient algorithm for solving stair-fold MILPs exists and is found, then
the result could be computed much faster than with an MILP solver.

4.3 Linear and Differential Cryptanalysis 4-Block MILP for AES

While analyzing the AES MILP, the framework found a 4-block structure. Based on this structure, the
following description can generate and visualize the matrix without knowing the underlying prin-
ciples of the cipher. To understand how the matrix takes the 4-block structure, consider Figure 4.8.
This example depicts the constraint matrix for three rounds. The freshly generated matrix with no
sorting function applied is shown in Figure 4.8a. Using the sorting functions from the framework,
the matrix takes the structure in Figure 4.8b. To see how this corresponds to our 4-block, the cor-
responding blocks are added in Figure 4.8c. Furthermore, we can see in Figure 4.8d the individual
blocks that construct the structure. The 4-block MILP for 𝑟 rounds is depicted in Theorem 4.5. The
matrix is a 36𝑟 + 1 × 16 + 20𝑟 + 1 matrix. The 4-block structure contains the block types 𝐴, 𝐵, 𝐶, 𝐷.

▶ Theorem 4.5 (4-block MILP for AES). Let 𝑟 be the number of rounds. The linear and differential
cryptanalysis MILP for AES has 4-block structure, i. e. we have

©«

𝐴 𝐵𝑠 𝐵1 · · · 𝐵𝑟−1 𝐵𝑒
𝐶𝑠 𝐷𝑠

𝐶1 𝐷1
...

. . .

𝐶𝑟−1 𝐷𝑟−1
𝐶𝑒 𝐷𝑒

binary variables︷      ︸︸      ︷ free variables︷                   ︸︸                   ︷
ª®®®®®®®®®®¬
·

©«

1
𝑑0
...

𝑑4𝑟−1
𝑥0
...

𝑥16(𝑟+1)−1

ª®®®®®®®®®®®®®¬
≥ 0,

where the constraint matrix has dimension 36𝑟 + 1 × 20𝑟 + 17 and 𝐴 ∈ Z4𝑟+1×4𝑟+1, 𝐵𝑠, 𝐵𝑒, 𝐵𝑖 ∈ Z4𝑟+1×16
for 𝑖 = {1, ..., 𝑟}, 𝐶𝑠, 𝐶𝑒 ∈ Z16×4𝑟+1, 𝐷𝑠, 𝐷𝑒 ∈ Z16×16 and 𝐶𝑖 ∈ Z32×4𝑟+1, 𝐷𝑖 ∈ Z32×16 for 𝑖 = {1, ..., 𝑟 − 1}.
Further, we have 𝑑𝑘 ∈ {0, 1} for 𝑘 = {0, ..., 4𝑟 − 1}, 𝑥 𝑗 ∈ {0, 1} for 𝑗 = {0, ..., 15} and 𝑥𝑖 ∈ R for 𝑖 =
{16, ..., 16(𝑟 + 1) − 1}.
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a. native Matrix b. sorted Matrix c. 4-block structure

A

𝐶𝑠

𝐶1

𝐶2

𝐶𝑒

𝐵𝑠 𝐵1 𝐵2 𝐵𝑒

𝐷𝑠

𝐷1

𝐷2

𝐷𝑒

d. formal 4-block

■ Figure 4.8. Constraint matrix for the linear and differential cryptanalysis MILP for three rounds
in the cipher AES. Every non-white entry is a nonzero entry in the matrix.

Block A

The block 𝐴 has dimensions 4𝑟 + 1 × 4𝑟 + 1. It contains a simple diagonal. The value in the first row
is -1. It stands for the constraint that ensures that at least one s-box is active: The sum of the input
of the s-boxes minus one has to be greater equal 0. The column corresponds to the constant 𝑙 = 1 in
the solution vector. The remaining values in the diagonal are -5, because they describe the branch
number. Each one of the rows in the 𝐴-block except for the first describe the linear function, the
MixColumns() operation in the cipher. Since there are four linear functions executed in every round,
there are 4𝑟 rows +1 row for the other constraint. These columns correspond to the 𝑑-variables. Since
there are four new 𝑑-variables in every round, the 𝐴-block has 4𝑟 + 1 columns. The 𝑑-variables have
to take binary values. For an entry 𝑦 of 𝐴 holds 𝑦 ∈ {−5,−1}. The 𝐴-block has the following form

𝐴 =

©«

−1
−5

−5

ª®®®®®®¬
.

Block B

The 𝐵-blocks all have the same dimensions and their height is the same as the 𝐴-block, thus 4𝑟 + 1.
The width is not dependent from the number of rounds, as it is always 16. There are three different
types of these 4𝑟 + 1 × 16 𝐵-blocks: 𝐵𝑠, 𝐵𝑖 ∀𝑖 ∈ {1, ..., 𝑟 − 1} and 𝐵𝑒. For an entry 𝑦 of 𝐵𝑠, 𝐵𝑒, 𝐵𝑖 holds
𝑦 ∈ {0, 1} for 𝑖 ∈ {1, ..., 𝑟 − 1}. The columns from the block 𝐵𝑠 describe the first variables that are
in the state array from the start. All of them have to take a binary value. The first row contains
the value 1 for every column. This is because every variable is an input to the s-box, and the first
constraint contains every input of the s-boxes. The second to the fifth row describe the input to the
linear function. The last 4(𝑟 − 1) rows are empty. This is due to the constraints which are built in the
other rounds, where the variables from the first state array are already discarded and therefore not
being used again. The block 𝐵𝑒 is the last 𝐵-block. It describes the variables that are created in the
last round, which can take any value. These variables are not the input to another round, thus they
only occur in one constraint. Since they are also not the input to an s-box, they are not contained in
the constraint in the first row. Because of this, there are only four non-empty rows in this block.
The Blocks 𝐵𝑠 and 𝐵𝑒 look like the following
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𝐵𝑠 𝐵1 𝐵2 𝐵𝑒

■ Figure 4.9. Visualization of the 𝐵-block for three rounds. In the dotted lines, one can see the four
long constraints belonging to a round. In Block 𝐵1 are the ’old’ variables from the last round and in
𝐵2 we can see the ’new’ constraints that are generated in this round.

𝐵𝑠 =

©«

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

04(𝑟−1)×16

ª®®®®®®®®®®®¬
, 𝐵𝑒 =

©«
1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

04(𝑟−1)+1×16 ª®®®®®®®®®¬
.

The blocks 𝐵𝑖 also have a continuous first row of value 1, because the columns of these blocks describe
the variables that are created in round 1 to round 𝑟−1. This means that every variable is also the input
to an s-box. Thus, they are contained in the constraint that ensures that at least one s-box is active.
Additionally, the variables can take any value, they are not restricted. All remaining rows except for
eight rows are empty. The position of these eight non-empty rows depends on the 𝑖. Each variable of
the 𝐵𝑖 -blocks is contained in two long constraints. The first constraint a variable is contained, is where
the variable is newly generated along with other three new variables. The second constraint where
the variables are contained is when they are the input to the next round, specifically the MixColumns()
operation. When looking at the block 𝐵𝑖−1 next to a 𝐵𝑖 -block, on the same height as the lower four
non-empty constraints the new variables that result from the input of the old variables in 𝐵𝑖 can be
found. This can be seen in Figure 4.9. The 𝐵𝑖 -blocks have the following form

𝐵𝑖 =

©«

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

04(𝑖−1)×16

04(𝑟−𝑖−1)×16

ª®®®®®®®®®®®®®®®®®®®®®®®®®¬

.

Block C

The lower part of the matrix is made out of 𝐶- and 𝐷-blocks. Each row describes a short constraint
where the 𝑑-variable has to be greater than or equal to the 𝑥-variable. Since each long constraint has
eight corresponding short constraints, the lower part has eight times more rows than the upper part
minus the first constraint. The entries describing the 𝑑-variables are in the 𝐶-blocks, and the entries
describing the 𝑥-variables are in the 𝐷-blocks. The 𝐶-blocks all have the same width 4𝑟 + 1 and for
an entry 𝑦 of 𝐶𝑠, 𝐶𝑒, 𝐶1, ..., 𝐶𝑟−1 holds 𝑦 ∈ {0, 1}. Just like in the 𝐴-block, the first column describes
the constant 𝑙 and the rest of the columns describe the 𝑑-variables. The number of rows is fixed. The
first and last block have 16 rows, the remaining blocks have 32. The 𝐶𝑠 and the 𝐶𝑒-block with the size
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16 × 4𝑟 + 1 have this form

𝐶𝑠 =

©«

1 1
1
1
1
1

1
1
1 𝑎
1 𝑎 𝑎
1

1
1
1
1
1

1

016×4(𝑟−1)

ª®®®®®®®®®®®®¬
, 𝐶𝑒 =

©«

1
1
1
1
1
1
1
1

𝑎 𝑎 𝑎 1
1
1
1
1
1
1
1

016×4(𝑟−1)+1

ª®®®®®®®®®®®®¬
.

The rest of the 𝐶-blocks have a height of 32 rows. The reason for the different heights of the 𝐶-blocks
is that the first and last 16 𝑥-variables are contained in only one MixColumns() operation. Thus, each
one of these variables is contained in only one short constraint. The rest of the 𝑥-variables are in
two long constraints, one for when being newly generated and one belonging to the input of the new
round. Thus, the 𝐶𝑖 -blocks consist of 32 rows instead of one. The 𝐶𝑖 -blocks have an empty column at
the beginning. Then 4 · (𝑖 − 1) empty columns follow. The next eight columns contain the values for
the 𝑑-variables. The last 4 · (𝑟 − 𝑖 − 1) columns are also empty. Their block size is always 32 × 4𝑟 + 1
and they look like

𝐶𝑖 =

©«

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

032×4(𝑖−1)+1 032×4(𝑟−𝑖−1)

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®®®¬

.

Block D

The D-blocks form a diagonal in the matrix. They describe again a short constraint, but the part
with the 𝑥-variable. The nonzero values are all −1, because the 𝑑-variable has to be greater than or
equal to the 𝑥-variable. Thus, 𝑑 ≥ 𝑥, which then was transformed to 𝑑 − 𝑥 ≥ 0. For an entry 𝑦 of
𝐷𝑠, 𝐷𝑒, 𝐷1, ..., 𝐷𝑟−1 holds 𝑦 ∈ {−1, 0}. Their height is either 16 (the first and last block) or 32. Each
block has a width of 16. This means, the block size is not dependent on the number of rounds. There
are 𝑟 + 1 D-blocks. The 𝐷𝑠 and 𝐷𝑒-blocks are the exact same. This is again because the 𝑥-variables
corresponding to the columns are contained in one MixColumns() operation, not two. The size of 𝐷𝑠
and 𝐷𝑒 is 16×16. The 𝐷𝑖 -blocks have double the rows of the 𝐷𝑠 and 𝐷𝑒-blocks, since the corresponding
𝑥-variables are contained in two long constraints. The size of a 𝐷𝑖 -block is 32× 16. The D-blocks have
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the following form

𝐷𝑠 = 𝐷𝑒 =

©«

−1

−1

ª®®®®®®®®®®®¬
, 𝐷𝑖 =

©«

−1
−1

−1
−1

−1
−1

ª®®®®®®®®®®®¬
.

The D-blocks are all independent from each other. Thus, the matrix has a 4-block structure where
the C- and D-blocks have two different sizes. Alternatively one could fill the rows of the 𝐶𝑠, 𝐶𝑒, 𝐷𝑠, 𝐷𝑒-
blocks with 16 empty rows. Then every C and D-block would have the same height of 32 rows.

With this description, knowledge about the underlying principles of the cipher is not needed, the
matrix and its structure can be generated nevertheless. The analysis revealed a 4-block structure,
which is the first real-world example of this theoretical construct. In case theoretical research re-
sults in an efficient algorithm for 4-block, whose existence is yet to determine, then computing the
minimum number of active s-boxes for AES might be much faster than using a general MILP solver.

4.4 Open Problems

By using the descriptions outlined in this chapter to create MILPs, it is possible to construct the ma-
trix more efficiently and quickly. Researchers who analyze the constraint matrix would not need to
go through the cipher and every single operation, but can just use these specifications. Through our
analysis the linear and differential cryptanalysis security bound MILP formulation for Enocoro-128v2
takes the novel stair-fold structure. This structure may be applicable to other MILPs for different ci-
phers. Then, the stair-fold structure itself could be of interest in theoretical research, and an efficient
algorithm could be developed for it in the future. For the MILP that calculates the security bound for
the cipher AES for linear and differential cryptanalysis, we found a 4-block structure. Even though an
algorithm to solve a 4-block has yet to be found, the block-structure in general is widely researched
and this is the first native occurrence of it. Since Mouha et al. used MILPs for searching bounds for
the first time, the method became widely used. Some examples are: Baksi [1] calculates bounds on
the GIFT-128 cipher using the convex hull method to derive the constraints. Boura et al. [9] present
new ways to show the behavior of the s-box with fewer inequalities in the constraint matrix. Zhou et
al. [35] analyze the problem using a divide-and-conquer approach. Using the framework, one could
generate the corresponding MILPs and analyze them. Perhaps even more new real-life structures for
MILPs can be found such that it becomes more efficient to use specific MILP algorithms instead of
using arbitrary MILP solver such as Gurobi.
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