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A�������

This work extends the problem of counting homomorphisms for two graphs to the problem
of counting homomorphisms for a set of graphs. The set H⌧ of graphs will be characterized
by a single tree decomposition ⌧ . For given ⌧ and an arbitrary graph G the task is to compute
hom(H ! G) for all graphsH 2 H⌧ . It contains a modi�ed version of the dynamic program
of Díaz, Serna and Thilikos [�]. The original and the modi�ed version have been implemented
in the Rust language and compared empirically. Experiments show that the modi�ed version is
faster than the original one for the majority of test instances.
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� I�����������

Graphs are one of the most important structures in theoretical computer science and have count-
less amount of applications. Their ability to model many types of networks like social relations
or real-world maps is known even by non-computer-scientists. A countless number of graph al-
gorithms can be used to solve many problems like �nding the shortest path from one location to
another. Even though many characteristics and parameters of graphs have been investigated in-
tensively some of the graph problems remain hard to solve. One of those hard problems is the
so-calledCounting Graph Homomorphisms Problem. Given two graphsH andG this prob-
lem asks to compute the number of edge-preserving mappings fromH to G. Are more precise
de�nition of graph homomorphisms can be found in chapter �.
Counting homomorphism itself seems to be amore theoretical problembut has applications in

statistical physics and other graph problems. For example, the problemof counting Independent
Sets in a given graph H can be reduced to the problem of counting all homomorphisms from
H to GIS where GIS denotes the graph containing two connected vertices with one self-loop.
Furthermore the number of isomorphic subgraphs can be computed by linear combinations of
graph homomorphisms[�].

��� S��������

Chapter � explains the theoretical fundamentals in more detail with some digression to related
topics. It contains all necessary de�nitions such as those for tree decompositions and graph ho-
momorphisms. Additional chapter � provides the most known complexity results regarding the
problem of counting graph homomorphisms. Chapter � covers the extended problem of this pa-
per and shows approaches by simply repeating existing algorithms for graph homomorphisms.
Chapter � provides the theoretical idea for modifying the dynamic program of Díaz, Serna and
Thilikos [�] and the concrete modi�cation itself. The implementation of these algorithms will be
explained in chapter �. It also contains explanations of all supported input and output formats.
The last chapter � sums up the experiments and results.
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� T���������� B�����

��� B����N�������

The cardinality of any setAwill be denoted by#A or |A| and letP(A) be the power set ofA.
In this work, Graphs will be denoted by capital letters likeG orH . We are dealing with graphs

where vertices could have self-loops but cannot have multiple edges towards the same vertex (no
multigraphs). A graphG is de�ned as a tupleG = (V (G), E(G))which consists of the �nite set
of vertices V (G) and the set of edgesE(G) ✓ V (G)2. We denote the edge {u, v} shortly as uv.
For a GraphG and a subset of verticesA ✓ V (G)we de�neG[A] as the subgraph ofGwhich

is induced by the vertices ofA. We de�neE[A] = {uv 2 E : u 2 A ^ v 2 A}. It follows that
G[A] = (A,E[A]).
For better distinction, we will call the vertices of trees nodes. The root of a tree T will be

denoted by r(T ).
For two graphsG andH and a subset of verticesX ✓ V (G) \ V (H) we denote by⇠X the

equality of both graphs regarding the vertices inX .

de�nition �.�. For two graphsG andH and a subsetX of vertices in V (G) \ V (H) we de�ne

⇠X as follows.

G ⇠X H () G[X] = H[X] (�.�)

��� T��������

The treewidth of a graphdescribes its structural resemblance to a tree. This conceptwas�rst intro-
ducedbyUmbertoBertelè andFrancescoBrioschi in the year ����. In their paper [�] the treewidth
was called dimension and has been de�ned for a sequence of so-called y-eliminations. The con-
cept of treewidth was rediscovered and set into the context of graph minors by Neil Robertson
and Paul Seymour in the year ���� and after [��, ��, ��]. Robertson and Seymour also introduced
an underlying structure for graphs, the so-called tree decomposition. Tree decompositions are the
fundamental structure of thiswork and thereforeneed tobe explained inmoredetail. The concept
of treewidth strongly correlates to the idea of k-trees which are well explained in the introduction

�



� Theoretical Basics

of the book [��] by TomKloks. A nice introduction to treewidth and tree decompositions can be
found in [�]. The following sections will describe these topics in a little bit more detail.

����� K������ ��� P������K������

K-trees can be imagined as trees where each tree node does not only consists of one single ver-
tex but of a set of vertices. They are a wider abstraction of standard trees known in theoretical
computer science. These bags of nodes correspond to a node of a underlying abstract tree. This
tree-like structure make it easy to use algorithm design techniques already used on standard trees
and adjust already known algorithms to broader sets of graphs. A k-tree can be de�ned recursively
as following.

de�nition �.� (k-trees). K-trees are de�ned by construction. A Clique of size k + 1 is a k-tree. A

k-tree T 0 with n + 1 vertices can be constructed from a k-tree T with n vertices by adding a new

vertex u and connecting u to a k-Clique in T .

A subgraphS of a k-treeT will be called a partial k-tree. Thenwewill callT a k-tree embedding
of S. Figure �.� exemplary shows the �rst two steps of a 3-tree construction.

Figure �.�: A simple construction of a 3-Tree

����� T��������

After de�ning k-trees the �rst de�nition of treewidth based on �nding k-tree embeddings for a
graphG canbe stated. Colloquially said for a given graphGwe try to�nd the smallest k-treewhich
functions as a k-tree embedding forG. And by smallest we mean the smallest k for which we can
�nd a k-tree that ful�ls the requirement of being a supergraph ofG. The following de�nition is
taken from [��].

de�nition �.� (treewidth). LetG be an arbitrary graph. The treewidth ofG is the minimum k

for which a k-tree embedding ofG exists. The treewidth ofG will be denoted by tw(G)

Hence the class of partial k-trees is exactly the class of graphs with treewidth at most k.

�



�.� Treewidth

����� T���D�������������

The treewidth plays an important role in parameterized complexity [�] since many problems can
be characterized by this additional parameter. By restricting the input to graphs with bounded
treewidth we can obtain algorithms for NP-hard problems which have a polynomial runtime in
all other parameters.
But to use treewidth for parameterized problemswe need another theoretical construct, the so-

called tree decomposition. This structure decomposes a graph into its underlying tree structure.
This directly correlates to the tree-likeliness mentioned for k-trees. More formal tree decomposi-
tions could be de�ned as follows. The next de�nitions are strongly inspired by [��, ��, ��, �].

de�nition�.� (tree decomposition). Atree decomposition ⌧ of aGraphG is a pair ⌧ = (T,�(p)p2V (T ))

consisting of a tree T and a collection of subsets of V (G) such that

�.
S

p2V (T )
�(p) = V (G)

�. for each edge {u, v} 2 E(G) exists a p 2 V (T ) width u 2 �(p) and v 2 �(p)

�. for each u 2 V (G) the nodes in {p 2 V (T )|u 2 �(p)} form a connected subgraph of T

(They form a subtree)

The subsets �(p) are also called bags. We de�ne the width of tree decomposition aswidth(⌧) =

maxp2V (T ){|�(p)|� 1}.

Tree decompositions provide an alternative view of treewidth. An equivalent to de�nition �.�
can now be stated by using tree decompositions.

de�nition �.� (treewidth). The treewidth tw(G) of a graphG is the minimumw � 0 such that

there is a tree decomposition ⌧ 0 ofG withwidth(⌧ 0) = w.

By decomposing an arbitrary graph into a tree it now becomes easier to algorithmically work
on it. But especially for dynamic programming, this "basic" variant of tree decomposition is not
optimal. We now de�ne two more variants of tree decompositions. The second one will be used
by the algorithmpresented in thiswork. For the�rst variant, we transform the tree fromde�nition
�.� into a rooted tree. The following de�nitions were introduced by Bodlaender and Kloks [�]

de�nition �.� (rooted tree decomposition). A tree decomposition ⌧ = (T,�(p)p2V (T )) is called

rooted if T is a rooted tree. The root of T will be denoted by r(T ).

Note that in this de�nition the tree T becomes a rooted tree. Hence for each edge e 2 E(T )

we can distinguish the incident nodes between parent and child.

�
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For each node p 2 V (T ) we de�ne Tp as the subtree of T rooted at p that we get if we delete
the edge between p and its parent node and take the connected component containing p. The set
↵(p) is then de�ned as the union of all bags in Tp, that is

↵(p) =
[

q2V (Tp)

�(q)

The second variant of tree decompositions is called nice tree decomposition. It specializes
rooted tree decompositions even more by adding three additional conditions. These three more
conditions make it easy to handle with dynamic programming. Nice tree decompositions were
also introduced by Bodlaender and Kloks [�].

de�nition�.� (nice tree decomposition). Wecall a rooted tree decomposition ⌧ = (T,�(p)p2V (T ))

nice if the following conditions are satis�ed:

�. Each node p 2 V (T ) has a maximum of two children.

�. For each node p 2 V (T ) with exactly two children q1, q2 it is that �(p) = �(q1) = �(q2).

�. For each node p 2 V (T ) with one child q 2 V (T ) either |�(p)| = |�(q)| + 1 and

�(q) ⇢ �(p) or |�(p)| = |�(q)|� 1 and �(p) ⇢ �(q) holds

For a tree decompositionwith these properties, it is easy to see that every node inV (T ) belongs
to one of the following types.

�. Start: Every leaf l 2 V (T ) is called a start node

�. Join: Every node p 2 V (T )with two children q1, q2 is called a join node

�. Forget: Every node p 2 V (T ) with exactly one child q 2 V (T ) such that �(p) < �(q)

is called a forget node

�. Introduce: Every node p 2 V (T ) with exactly one child q 2 V (T ) such that �(p) >

�(q) is called an introduce node

For a vertex v 2 V (G) and a forget node pwith its child node qwe say that v is forgotten at p if
�(p) = �(q)\v. For a vertex v 2 V (G) and a introduce node pwith its child node q we say that
v is introduced at p if �(p) = �(q) [ v. Note that in consequence of condition � of de�nition
�.� every vertex in V (G) can be introduced multiply times but only forgotten once.
It is possible to assume for each start node l that |�(l)| = 1. Every start node lwith |�(l)| > 1

can be transformed into one start node l0 with |�(l0)| = 1 and |�(l)|�1 introduce nodes, which
add the remaining vertices. We will also assume that r(T ) is a forget node with �(r(T )) = ;

�



�.� Treewidth

The following lemma is taken from [�] and provides the possibility of assuming that we always
look at nice tree decompositions.

Lemma �.�. For a constant k � 1, given a tree decomposition ⌧ = (T,�(p)p2V (T )) of a graphG

withwidth(⌧)  k and |V (T )| = O(n), where n is the number of vertices ofG, one can compute

a nice tree decomposition ⌧⇤ ofG in timeO(n) withwidth(⌧⇤)  k and at mostO(n) nodes.

Figure �.�: A graph(left) with one possible tree decomposition(middle) and a nice tree decomposition of
it(right)

����� T��������� �N���T���D������������

The main algorithms shown in this work are dynamic programs following a special traversal of a
nice tree decomposition, the so-called stingy ordering. This order reduces the amount of mem-
ory that has to be used at the same time to logarithmic in the number of nodes in the tree. The
following de�nition is a variant of the de�nition from the paper [�] by Díaz, Serna and Thilikos.

de�nition �.� (stingy ordering). LetT be a rooted binary tree withn = |V (T )|. Let b the number

of nodes in T with degree two, i.e. they have exactly two children. An ordering u1, . . . , un of V (T )

is called stingy if the following conditions hold.

�. The �rst node of the ordering u1 is a leaf.

�. The last node of the ordering un is the root, i.e. un = r(T ).

�. For every node ui its parent appears at some position j with j > i.

�. For any j the number of nodes in the set {u1, . . . , uj} whose parents appear at a position

k > j is at most log b+ 1

�
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Later when calculating the number of homomorphisms the dynamic programs will follow the
stingy ordering of a nice tree decomposition and calculate a list of entries for each node. This
calculation will use only entries of child nodes. After the entries of a node have been calculated
the dynamic program can delete the entries of its child nodes. Hence the number of nodes for
which entries must be saved is at most log b + 1. Calculating a stingy ordering can be done in
timeO(n) and will be shown in section �.�.

��� G����H����������� ��� I����������

����� H�����������

Let us move on to the main subject of this paper, graph homomorphisms. In this chapter, the
basic de�nition of graph homomorphisms and isomorphisms will be stated and some notation
will be �xed. Furthermore, some observations and claims are presented which will be used to
improve the algorithms presented in the following chapter. A great introduction to the problem
of counting graph homomorphisms was provided by Christian Borgs, Jennifer Chayes and Lázló
Lovász in their paper[�]. For more information about graph homomorphisms themselves and
their relations to other graph structures and problems, I recommend the paper[��] by Hahn and
Tardif.
In general homomorphisms are structure-preserving mappings. For graphs, this means that

we want to preserve edges. If two vertices in the domain graph have an edge in common the ver-
tices they are mapped on should have too. More formally spoken, graph homomorphisms can be
de�ned as follows.

de�nition �.� (graph homomorphism). Given two graphsH andG, a mapping � : V (H) !

V (G) is called a graph homomorphism if it satis�es the following condition for each {u, v} 2

V (H)2.

{u, v} 2 E(H) =) {�(u),�(v)} 2 E(G) (�.�)

Since this paper is about counting graph homomorphisms those will be simply called homo-
morphisms. A graph homomorphism from a graph G to another graph H is also called H-
coloring, see for example[��]. This term is originate from the understanding of graph homo-
morphisms as an abstraction of n-colorings. The question of whether G has a n-Colorings is
equivalent to the question of whetherG has a homomorphism to theKn whereKn denotes the
complete graph with n vertices. But in the context of the above de�nition, the termH-Coloring
will be avoided since the function of the graph identi�erH andG has been swapped.

�
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de�nition �.��. For two graphsH andG we de�neHom(H ! G) as the set of all homomor-

phisms fromH toG.

Counting homomorphisms between two graphs H and G means computing the cardinality
of |Hom(H ! G)|. For easier notation we will denote the cardinality of |Hom(H ! G)|

as hom(H ! G). A more precise de�nition of the counting problem dealt with in this paper
can be found in de�nition �.�. For the problem of counting graph homomorphism, it is only
necessary to look at connected graphs. The following two properties of hom(H ! G) taken
from the paper [�] will justify this restriction.

Lemma �.�. LetG be an arbitrary graph and let the graphH be the disjoint union of the graphs

H1, . . . , Hn then the following equation holds.

hom(H ! G) =
nY

i=1

hom(Hi ! G) (�.�)

Lemma �.�. Let H be an arbitrary graph and the graph G be the disjoint union of the graphs

G1, . . . , Gn then the following equation holds.

hom(H ! G) =
nX

i=1

hom(H ! Gi) (�.�)

These two lemmatamake it possible to�rst decompose a graph into its connected components,
calculate the number of homomorphism for each component separately and thenmultiply or add
them together.

����� I����������

Structural similarity of two graphs could be achieved by restricting homomorphism only to the
bijective ones. A bijective homomorphism is called an isomorphism. It follows the formal de�ni-
tion of graph isomorphism.

de�nition �.��. Given two graphsH andG. A function � : V (H) ! V (G) is called isomor-

phism if � is bijective and the following condition holds for every {u, v} 2 V (H)2.

{u, v} 2 E(H) () {�(u),�(v)} 2 E(G) (�.�)

Since f has to be a bijection the numbers of vertices of both graphs have to be identical. Also,
the number of edges must be the same, since every edge inH will be bijectively mapped to exactly
one edge in G. If there exists an isomorphism between two graphsH and G they will be called

�
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isomorphic which will be denoted byH ' G. If two graphsH andG are isomorphic for every
graphC the following equality holds.

|Hom(H ! C)| = |Hom(G ! C)| (�.�)

This can be seen easily by constructing a homomorphism �0 : V (G) ! V (C) from each
homomorphism in Hom(H ! C) by simply using the image of an isomorphism between G

andH .

Figure �.�: A graph homomorphism from graphH to graphG on the left and a graph isomorphism from
H toG on the right

����� C��������� ��G����H�����������C�������

This section will be a short digression into the complexity of counting and �nding graph ho-
momorphisms. More precisely we look at the main result of Roth and Wellnitz [��]. They also
provide a great introduction to the most important complexity results regarding graph homo-
morphism problems which we will follow along in this section. First of all, we have to distinguish
between two sorts of problems regarding graph homomorphisms. The most basic sort of prob-
lem is the deciding problem, in which we are asked to decide for two given graphs if there exists a
homomorphism from one graph to the other.

de�nition �.��. LetH and G be two classes of graphs. The problemHOM(H ! G) is then de-

�ned as follows. Given two graphsH 2 H andG 2 G decide whether there exists a homomorphism

fromH toG.

Hell andNesetril showed in their paper[��] thatHOM(U ! G)whereU denotes the class of
all graphs in the following is NP-hard in generally but can be solved in polynomial time for some
special classes. For the parameterized setting Grohe [��] showed that HOM(H ! U) can be

��



�.� Graph Homomorphism and Isomorphism

solved in polynomial time if the treewidth of the graphs in the classH is bounded by a constant
k. On the other hand is the counting problem for graph homomorphism, the so-called Counting
Graph Homomorphism Problem.

de�nition �.��. LetH and G be two classes of graphs. The problem#HOM(H ! G) is then

de�ned as follows. Given two graphsH 2 H andG 2 G count the number of homomorphism from

H toG, i.e. calculate hom(H ! G).

For the counting problem exist two well-known results in complexity theory. The �rst one
�ts more into the classical complexity schema of P and NP. Dyer and Greenill [�] showed that
#HOM(U ! G) is #P-complete in general except three special classes of graphs. Also for param-
eterized complexity exists a characterization of the problem. The paper [�] by Dalmau and Jon-
sson provides the following parameterized characterization of the problem#HOM(H ! U).
The problem of counting homomorphism from a graphH to an arbitrary graphG is solvable in
polynomial ifH is of bounded treewidth. The paper of Roth and Wellnitz [��] also provides a
signi�cant result. They stated that every problem in#W [1], a counting equivalence to the class
W [1], can be translated into an equivalent graph homomorphism counting problem. More pre-
cisely given a problem P 2 #W [1] there exist two classes of graphs H and G such that P is
equivalent to counting homomorphism from a graph inH to a graph in G. To give an example,
the problem of counting all paths of given length in a graph lies in#W [1]. An introduction to
parameterized complexity can be found in [�].
In the end of this chapter, I want to clarify the di�erences between some notations. In this sec-

tion, we looked at the problems of deciding and counting graph homomorphisms. These prob-
lems are always written in capital letters, so they can be distinguished from the set of homomor-
phisms from one graph to another and its cardinality. There are three di�erent notations.

�. HOM(H ! G) describes the problem of deciding whether a homomorphism fromH to
G exists whereH and G are classes of graphs.

�. Hom(H ! G) denotes the set of all homomorphisms from the graphH to the graphG.

�. hom(H ! G) is the number of homomorphisms fromH toG, i.e. hom(H ! G) =

|Hom(H ! G)|.
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The following chapter is about the main problem this paper deals with. In this problem, we do
not only want to compute the number of homomorphisms for a single graph but for a whole set
of graphs. These graphs will be characterized by a given tree decomposition. This chapter starts
by giving a formal de�nition of the problem and continues by describing some properties of the
setH⌧ . After looking at this formal aspect of the problem, we will look at the running time of
existing algorithms which can be simply repeated for all graphs in the set.
Given a tree decomposition ⌧ = (T,�(p)p2V (T ))we de�neH⌧ to be the set of all graphs that

may have ⌧ as their tree decomposition. The problem this paper deals with is then de�ned as.

de�nition �.� (problem). Given a tree decomposition ⌧ = (T,�(p)p2V (T )), the set H⌧ and a

graphG, compute hom(H ! G) for allH 2 H⌧ .

��� C�������������� ��H⌧

Togain a better understandingwewill observe the setH⌧ in the following section. We assume that
⌧ is a correct tree decomposition. Remember that the setH⌧ is de�ned as the set of all graphs that
may have ⌧ as their tree decomposition. Hence we can observe some restrictions on the graphs of
H⌧ . Let us look at an arbitrary graphH ofH⌧ . Which properties does this graph have?
The most obvious property ofH regards the set of vertices ofH . Recalling the de�nition �.�

of tree decompositions, especially the �rst condition, we can easily see that V (H)must equal the
union of all bags of ⌧ . Since all graphs inH⌧ have the exact same set of vertices, we will denote
this set by V⌧ . Formally stated

V (H) = V⌧ :=
[

p2V (T )

�(p) (�.�)

The second condition of de�nition �.� restricts the set of possible edges the graphH may have.
This condition requires that the following implication holds [{u, v} 2 E(H)] =) [9p 2

V (T ) : u 2 �(p) ^ v 2 �(p)]. Put into words this means that an edge {u, v} is only allowed if
there exists a node p 2 V (T )with its bag �(p) containing both u and v. Since the set of possible
edges is equal for every graphH 2 H⌧ and only depends on ⌧ we will denote this set byE⌧ .

��
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E⌧ := {{u, v} 2 V 2
⌧ : 9p 2 V (T ) : u 2 �(p) ^ v 2 �(p)} (�.�)

Note that condition � of de�nition �.� does not restrict the set ofH⌧ because it only e�ects the
structure of the Tree T . Using the de�nition of V⌧ and E⌧ we can now de�ne the setH⌧ more
formally.

H⌧ := {V⌧}⇥ P(E⌧ ) (�.�)

Since V⌧ is �xed for each graph inH⌧ , they di�er only by their set of edges. Hence for a �xed
⌧ we can index each graphH 2 H⌧ by its set of edgesE(H) 2 P(E⌧ ). Let �⌧ : P(E⌧ ) ! H⌧

where the following holds

�⌧ (E) 7! H = (V⌧ , E) (�.�)

The index function always depends on the tree decomposition ⌧ and gives as a boundary for
the number of graphs inH⌧ .

|H⌧ | = |P(E⌧ )| = 2|E⌧ |  2|V⌧ |2 (�.�)

The index function provide a beautiful way of storing graphs fromH⌧ e�ciently whenE⌧ is
known. Since we are dealing with a potential set, we can represent every set E 2 P(E⌧ ) and
therefore everyH 2 H⌧ as a bit vector ~H of length |E⌧ |. Every edge inE⌧ gets an unique index
in {1, 2, . . . , |E⌧ |}. We will denote the index of edge e 2 E⌧ with i(e). The function �⌧ should
then be de�ned as a function mapping from {0, 1}|E⌧ | toH⌧ .

�⌧ ( ~H) 7! H = (V⌧ , E) ()

"
^

e2E⌧

( ~Hi(e) = 1 () e 2 E)

#
(�.�)

We then call ~H the characteristic vector of the graph H . Note that �⌧ is obviously injective
and 2|E⌧ | = |P(E⌧ )| = |H⌧ |, therefore the function �⌧ is bijective. Hence each graph inH⌧

can be described by a bit vector of length |E⌧ |when the indexing ofE⌧ is known. It may confuse
the reader why this representation ofH 2 H⌧ will be described so early. The reason for this lies
in the simpli�cation of some proofs presented in the following sections. Since we have a bijection
betweenH⌧ and {0, 1}|E⌧ | we can argue about the cardinality of subsets ofH⌧ by using simple
arguments for the corresponding bit vectors.
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��� �������� �������

Existing methods are limited to counting homomorphism from one graph to another. To com-
pute hom(H ! G) for eachH 2 H⌧ one can simply execute those algorithms for all graphs.
Assuming the running time of an arbitrary algorithm for calculating hom(H ! G) would be
O(T ) thenwe could solve our problem in timeO(T ·|H⌧ |) = O(T ·2|E⌧ |). Each of the following
two sections cover an algorithm for computing hom(H ! G)

����� B���� F����A��������

Given an arbitrary tree decomposition ⌧ , a graphH 2 H⌧ and an arbitrary graphG. The brute
force algorithmwill try out everymapping f fromH toG and checks if f is a homomorphism by
looping over each edge uv in E(H) controlling whether f(u)f(v) 2 E(G) holds or not. The
number of all mappings from H to G is |V (G)||V (H)| since every vertex in H can be mapped
to every vertex in G. Every mapping then has to be checked to be edge-preserving. Therefore
the image of every edge in E(H) can be controlled by checking the corresponding entry in the
adjacent matrix ofG. Assuming this entry look-up can be done in constant time, we will get an
runtime of O(|V (G)||V (H)|

· |E(H)|) for calculating hom(H ! G). The overall runtime
would beO(2|E⌧ | · |V (G)||V (H)|

· |E(H)|) for solving the problem from de�nition �.�.

����� DP ��D���� S���� ���T�������

In this section, we are going to discover the dynamic programming algorithm[�] of Díaz, Serna
and Thilikos. It will be described in more detail since the algorithm presented in this work is just
a variation of it and therefore it is important to understand the details. The following theorem is
one of the main results in the paper[�].

Theorem �.�.�. Givena graphH withh = |V (H)|, a nice tree decomposition ⌧ = (T, {�(p)}p2V (T ))

ofH with width k and a stingy ordering u1, . . . , um of the nodes in V (T ) then, there is an algo-

rithm that computes hom(H ! G) in O(hnk+1
· min {k, n}) steps using O(nk+1

· log h)

additional space, where n = |V (G)|.

We assume that the graphH with its tree decomposition ⌧ = (T, {�(p)}p2V (T )) and a stingy
ordering u1, . . . , um is given and we want to compute hom(H ! G) for an arbitrary graphG.
By following a stingy ordering the algorithm successively �lls out the table Ip(�)which saves the
number of extending homomorphisms for each node p 2 V (T ) and eachmapping� 2 Fp. The
set Fp contains all mappings from �(p) to V (G), i.e. Fp := {� : �(p) ! V (G)}.

de�nition �.�. Given a node p 2 V (T ) and a mapping � 2 Fp the table Ip(�) is de�ned as
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Ip(�) = |{✓ 2 Hom(H[↵(p)] ! G) : ✓|�(p) = �}| (�.�)

where ✓|S describes the restriction of the function ✓ to S, i.e.

✓|S = {(v, a) 2 ✓ : v 2 S} (�.�)

The entries of Ip(�) are computed step by step beginning at the leaves of the tree decomposi-
tion ⌧ . Each type of node will be handled di�erently. We will now observe each type and discuss
the behaviour encountering a node of this type beginning with leaves. After the entries of a node
have been computed the data corresponding to all of its child nodes will be deleted, since they are
only needed once. Pseudocode is also provided later.

Letp 2 V (T )be a leaf of the tree decomposition ⌧ and v the unique vertex of�(p). For setting
the entries we have to distinguish between two possible cases. If the edge {v, v} is not contained
inE(H), we can simply set Ip((v, a)) = 1 for each a 2 V (G). The only extending homomor-
phism of (v, a) is the mapping itself. Hence we can set the entry without further checking. In
the second case the edge {v, v} is an edge ofH . Here we have to check if the vertex a, the image
of v, also has a self loop. Hence we set Ip((v, a)) = 1 if and only if {a, a} 2 E(G) for each
a 2 V (G).

Let p be an introduce node, q its child node and v be the unique vertex been introduced at
p. The set Sq is de�ned as Sq = {u 2 �(q) : {u, v} 2 E(H[↵(p)])}. Which is the set of
all vertices in �(p) adjacent to v. The introduced vertex v has to be mapped on a vertex a 2

V (G) such that all vertices in Sq are mapped to adjacent vertices of a. Therefore the algorithm
needs to check if {a,�(u)} 2 E(G) holds for ever u 2 Sq . Calculating the entry itself after
checking this condition is easy. The algorihtm just has to set the new entry to the old one, i.e
Ip(�[{(v, a)}) = Iq(�). The algorithm�will be extended by the introduced vertex. This does
not change the amount of extending homomorphisms in the rest of ↵(p).

Let p be a forget node, q its child node and v be the unique vertex been forgotten at p. By
removing one vertex the number of mappings in Fp will be smaller than those in Fq . Therefore
somemappings � : �(q) ! V (G) are resulting in the samemapping when v has been removed.
The entry Ip(�)will then be set to Ip(�) =

P
a2V (G)

Iq(� [ {(v, a)}).

Let p be a join node with its children q1 and q2. Since �(p) = �(q1) = �(q2) holds, we also
know that Fp = Fq1 = Fq2 . The graphH[↵(p)] is the union ofH↵(q1) andH[↵(q2)]. Since
all edges these three (sub-)graphs have in common are contained �(p) = �(q1) = �(q2) every
mapping in Fp can be described as a combination of a mapping from Fq1 and a mapping from
Fq2 . Hence we have to compute Ip(�) = Iq1(�) · Iq2(�) for every � 2 Fp.
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The complexity result can be obtained by the following short analysis. The number of entries
that must be computed at each node p is |Fp|. The cardinality of Fp is given by |V (G)||�(p)|.
Since the tree decomposition is of width k we can bound this term by |V (G)|k+1.
The computation of one entry for leaf, forget or join node takes time O(n). For introduce

nodes the computation time depends on the representation of Np(v). Therefore the running
time isO(min {n, k}).
Hence the complexity follows. Given a nice tree decomposition ⌧ The numbers of homomor-

phisms hom(H ! G) for each graph inH⌧ can then be computed in time O(2|E⌧ | · hnk+1
·

min {k, n}). In comparison to the brute force algorithm, thismeans an enormous speed-up since
bounding the width of ⌧ will lead to polynomial time needed for each graph.
For each node Ip(�) could have at most n|�(p)| entries, which equals the number of possible

mappings from �(p) to V (G). Since |�(p)| is bounded by k + 1, the number of entries per
node is bounded by nk+1. By de�nition �.� of the stingy ordering we know, that the data of at
most log h+ 1 nodes have to be available at the same time. Hence the additional space needed is
O(nk+1

· log h).

Algorithm �.�: Counting graph homomorphisms
� input : Graphs H and G ,
� a n i c e t r e e d e c ompo s i t i o n ⌧ = (T, {�(p)}p2V (T )) o f H

� and a s t i n g y o r d e r i n g U = u1, . . . , um o f V (T )

� output : hom(H ! G)

�

� f o r i = 1 t o n

� s e t p = ui

�

� i f p i s a l e a f w i th �(p) = {v}
�� f o r a l l a 2 V (G) s e t Ip((v, a)) = 1 i f [{v, v} 2 V (H) =) {a, a} 2 V (G)]

��

�� i f p i s an i n t r o d u c e node
�� l e t q be i t s un ique c h i l d and {v} 2 �(p)\�(q)
�� s e t Np(v) = {u 2 �(p)|{u, v} 2 E}
��

�� f o r a l l � 2 Fq and a 2 V (H)

�� i f 8u2Np(v){�(u), a} 2 E(G)

�� s e t Ip(� [ {(v, a)}) = Iq(�)

�� e l s e

�� s e t Ip(� [ {(v, a)}) = 0

��

�� e r a s e i n f o rm a t i o n on node q

��

�� i f p i s a f o r g e t node
�� l e t q be i t s un ique c h i l d and {v} 2 �(q)\�(p)
�� f o r a l l � 2 Fp s e t Ip(�) =

P
a2V (H) Iq(� [ {(v, a)})

��

�� e r a s e i n f o rm a t i o n on node q

��
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��

�� i f p i s a j o i n node
�� l e t q1 and q2 be i t s c h i l d r e n
�� f o r a l l � 2 Fp s e t Ip(�) = Iq1 (�) · Iq2 (�)
��

�� e r a s e i n f o rm a t i o n on node s q1 and q2

��

�� return Ir(T )(;)

��� G��������� �������� �����

Before using one of the algorithms mentioned above, the graphs have to be generated. Since the
set of vertices is �xed, only the set of possible edges E⌧ has to be generated. In the following, a
simple algorithm for calculating all possible edges will be described.

Algorithm �.�: Computing possible edges
� input : A n i c e t r e e d e c ompo s i t i o n ⌧ = (T, {�(p)}p2V (T ))

� and a s t i n g y o r d e r i n g U = u1, . . . , um o f V (T )

� output : E⌧

�

� s e t E⌧ = ;
�

� f o r i = 1 t o m

� s e t p = ui

� s e t E
0
⌧ = E⌧ [ �(p)2

�� s e t E⌧ = E
0
⌧

��

�� return E⌧

This algorithm simply unions the Cartesian product of all bags. Therefore the running time is
bounded byO(|V (T )| · |V⌧ |

2) since checking if an edge already has been added or not only needs
timeO(|V⌧ |) by using an adjacency matrix.
To prove correctness, assume that there exists an edge uv 2 E⌧ which has not been found by

the algorithm. Then u and v cannot be contained in one bag at once. Otherwise, algorithm �.�
would have found it. But that is a contradiction to the de�nition ofE⌧ since there must be a bag
containing both u and v.
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This chapter contains a modi�cation of the dynamic program of Díaz, Serna and Thilikos pre-
sented in the previous chapter. The chapter beginswith a simple algorithm for calculating a stingy
ordering. It continues by presenting the theoretical base for reusing entries of the dynamic pro-
gram. After that, the computational steps for each type of node will be described in more detail.
The chapter ends with a short analysis of the time and space complexity.

��� C�������� � S�����O�������

This section provides a recursive algorithm proo�ng lemma �.�. We de�ne b(p) for p 2 V (T )

as the number of nodes with degree exactly two in the subtree Tp. The concatenation of two
orderings will be denoted by �.

Lemma �.� (Computing a stingy ordering). Given a binary treeT withnnodes. A stingy ordering

of T can be computed in timeO(n) using algorithm �.�.

Proof. The time complexity of this algorithm can be analysed quickly by noting that each node in
T will only be once the root of a subtree andhence observed only once. The number of operations
needed per node is constant. Hence the time complexity follows. The correctness of the algorithm
will be proven by induction. Therefore we show that stingy_ordering(p) returns a correct stingy
ordering of Tp for all p 2 V (T ) if it already returned a correct stingy ordering of its child nodes.
base case: Assuming that p is a leafwith degree zero. The algorithmwill just return p as a stingy

ordering. Conditions �,�,� of de�nition �.� are easy to see. Condition � also holds since b(p) = 0

and log (b(p)) + 1 = 1.
induction step: Assuming that stingy_ordering correctly computes a stingy ordering for all

children of p. Condition � follows the observation that stingy_ordering �rst returns an entry for
the stingy ordering when reaching a leaf. Hence the �rst node of the ordering must be a leaf.
Since the node p will always be put to the back of the stingy ordering, p will always be behind

its children and condition � is satis�ed.
At lastwehave toproof that condition�holds. For a givenorderU = u1, . . . , um of treenodes

we de�ne cw(U) = maxj |{u 2 U |p(u) > j}|, where p(u) denotes the position of the parent
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of u in the ordering U . Note that cw stands for cut-width because the de�nition of cw() equals
the more general de�nition of cut-width for graphs, when imagine the order as a line graph with
edges between adjacent nodes. Here cw was de�ned to better describe condition �. Condition �
holds as long cw(p)  log (b) + 1 is given. For the proof we distinguish between the following
cases.

case � : Let p be a leaf then the condition holds as shown in the base case.

case � : Let p be a node with degree exactly one and let u1, . . . , um the order returned by
stingy_ordering(p). Let q be the unique child of p. Since stingy_ordering(q) already returned a
correct stingyorderingweknowthat condition�holds. Whenattachingp to the endof stingy_ordering(q)
the cut-width stays the same sinceq is directly beforep and there cannotbe anynode in stingy_ordering(q)
for which holds that its parent comes after p.

case � : Let p be a node with degree exactly two. Assume b(q1) � b(q2). The cut-width of
stingy_ordering(q1)will notbe increasedby theneworderbut the cut-widthofstingy_ordering(q2)
will be increased by the edge between q1 and p. This argument is visually shown in �gure �.�.

Figure �.�: A visualization of the proof of case �

Therefore holds the following equation.

cw(p)  max {cw(q1), cw(q2) + 1} (�.�)

Now we have to distinguish between two more cases. case �.� : cw(q1) >= cw(q2). Then it
follows that.
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cw(p) = cw(q)  log (b(q1)) + 1  log (b(p)) + 1 (�.�)

case �.� : cw(q1) < cw(q2). Note that by assumption b(q2) < 1
2 · b(p) since b(q1)  b(q2)

and b(p) = b(q1) + b(q2) + 1. It follows

cw(p) = cw(q2) + 1  log (b(q2)) + 2 = log

✓
1

2
b(p)

◆
 log (b(p)) + 1 (�.�)

Which results in condition 3 that states that cw(p)  log(b(p)) + 1.

Algorithm �.�: Computing a stingy ordering
� s t i n g y _ o r d e r i n g (T )
� input : a r o o t e d b i n a r y t r e e T wi th r o o t r

� output : a s t i n g y o r d e r i n g o f u1, . . . , un o f V (T )

� l e t c = deg(r)

� i f c == 0

� return r

� i f c == 1

� l e t q be t h e un ique c h i l d o f r

� return s t i n g y _ o r d e r i n g (Tq ) � r

�� i f c == 2

�� l e t q1 and q2 be t h e c h i l d r e n o f r a s s um in g t h a t b(q1) � b(q2)

�� return s t i n g y _ o r d e r i n g ( q1 ) � s t i n g y _ o r d e r i n g ( q2 ) � r

��� E��������� E������

The following section lays the theoretical foundation for adjusting the algorithm �.� to the prob-
lem stated in de�nition �.�. This modi�cation of the dynamic program is based on the following
observation. Given two graphsH 0 andH 00 from the setH⌧ , an arbitrary graph G and an arbi-
trary node p 2 V (T ). IfH 0 andH 00 are equal regarding the vertices in↵(p) the entries Ip(�) are
equal for both graphs and all mappings �. Hence those entries have to be computed only once
andmay speed up the computation. First of all the table of algorithm �.� has to be modi�ed. The
following de�nition describes a �rst, simple approach for extending the table. Therefore recall the
de�nitions of section �.�.�.

de�nition �.�. For each graphH 2 H⌧ , node p 2 V (T ) and mapping � 2 Fp the entries of the

table are de�ned by the following equation.

IH,p(�) = |{✓ 2 Hom(H[↵(p)] ! G) : ✓|�(p) = �}| (�.�)
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Note that the only di�erence between the table of de�nition �.� and de�nition �.� is that we
extend it by one dimension, namely the graphH 2 H⌧ . In other words IH,p(�) is the number
of extending homomorphisms of � inH[↵(p)].
The number of entries in IH,p(�) increases to |H⌧ | · |V (G)|k+1

· |V (T )| which is equal to
2|E⌧ | · |V (G)|k+1

· |V (T )|.
The following lemma is the foundation of the algorithm.

Lemma �.�. Let H 0 and H 00 be graphs in H⌧ and let G be an arbitrary graph. Then holds

IH0,p(�) = IH00,p(�) ifH 0
⇠↵(p) H

00 for p 2 V (T ) and � 2 Fp.

Proof. Assuming thatH 0
⇠↵(p) H 00, the set of homomorphisms fromH 0 to G is equal to the

set of homomorphisms fromH 00 toG. It isHom(H 0[↵(p)] ! G) = Hom(H 00[↵(p)] ! G).
Hence the following equation holds.

IH0,p(�) = |{✓ 2 Hom(H 0[↵(p)] ! G) : ✓|�(p) = �}| (�.�)

= |{✓ 2 Hom(H 00[↵(p)] ! G) : ✓|�(p) = �}| = IH00,p(�) (�.�)

This lemma gives us a tool for reducing the number of computations. The following corollary
results immediately.

Corollary �.�.�.�. For a graphH 2 H⌧ and a node p 2 V (T ) holds the following. Every graph

H 0
2 [H]↵(p) has the following property.

IH0,p(�) = IH,p(�) (�.�)

Here [H]↵(p) denotes the class of all graphs H 0
2 H⌧ for which H ⇠↵(p) H 0 holds. For

better readability the notation does not contain ⌧ , but it should be clear by context which tree
decomposition ⌧ is meant.
Corollary �.�.�.� leads tomany identical entries whichwill be computed unnecessarily. For this

reason, we will reduce the size of the table to only those entries which are needed.

��� R������T����

IfH 0
⇠↵(p) H

00 holds for two graphsH 0 andH 00 both graphs have the same subgraph induced
by the vertices of↵(p). Hence the equivalence class of a graphH regarding a node p can be repre-
sentedby a single (sub-)graph. For a nodep 2 V (T ) and a subset of possible edgesE ✓ E⌧ [↵(p)]

we will de�ne the graph S[p]
E

as follows.
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S[p]
E

= (↵(p), E) (�.�)

The graph S[p]
E

is then the representative of the equivalence classA[p]
E
. That is

A[p]
E

= [S[p]
E
]↵(p) (�.�)

For a graphH 2 H⌧ and a node p 2 V (T ) we can easily determine which equivalence class
contains it by looking at which subgraph S[p]

E
is equal toH when it is restricted to the vertices in

↵(p). But since every graph inA[p]
E

has the same entry we should only concentrate on calculating
the values for the representatives S[p]

E
.

For a node p 2 V (T ) we will denote the set of all equivalence classes byA[p] and the set of all
representatives by S[p].

We will nowmodify the table IH,p(�) again to reduce the number of entries. We see that every
equivalence class can be characterized by a single graph that is restricted to the vertices in ↵(p).
Hence we just need one entry for eachA[p]

E
instead of one entry for eachH 2 H⌧ . This reduces

the size of entries per node p 2 V (T ) fromO(2|E⌧ | · |V (G)|k+1) toO(2|E⌧ [↵(p)]| · |V (G)|k+1).
We can now de�ne a new table that considers graphs of S[p].

I
S
[p]
E

,p
(�) = |{✓ 2 Hom(S[p]

E
! G) : ✓|�(p) = �}| (�.��)

Since the vertex set is �xed we can describe S[p]
E

clearly by its set of EdgesE. This simpli�es the
table to the following de�nition.

IE,p(�) = |{✓ 2 Hom(S[p]
E

! G) : ✓|�(p) = �}| (�.��)

with p 2 V (T ) andE ✓ E⌧ [↵(p)]. The di�culty in counting the entries now lies in �nding
the correct entries in the tables of the child nodes. Note that the equivalence classes also provide
a partition ofH⌧ which can get �ner at each node. So it makes sense to understand the task of
�nding the correct entries as a partition re�nement task.

Another point of view may be, that we are building the setH⌧ bottom-up step by step while
moving the tree upward. Hence we could also build the setE⌧ step by step while walking up the
tree. In the beginning - in a leaf - we have the loosest partition ofH⌧ which only consist of two
class; the graph with one vertex and no edge and the graph with one vertex and a self-loop. These
classes becomes �ner until we have for every graph inH⌧ a single class in the root node.

��
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��� C������������ S����

This section is about the details of modifying algorithm �.�. The computational frame stays the
same as the speci�c calculations for the entries. One main di�culty lies in addressing the right
entries of the dynamic table by choosing the correct edge set. The right choice of table entries and
the computation itself will be described in the following for each node type separately.

����� L���

Let p be a leaf node and let v be the unique vertex in �(p). The only possible edge contained
in E⌧ [↵(p)] could be the self loop of v. Therefore we have to set two entries for each mapping
� : �(p) ! V (G). One for graphs containing the edge {v, v} and one for graphs without edges.
The second one is really easy since for every mapping the entry could be set to one, i. e. we set for
all � : �(p) ! V (G)

I;,p(�) = 1 (�.��)

The �rst case is harder because we have to check if the image of v also contains a self-loop. This
means for all � : �(p) ! V (G)we set

I{vv},p(�) = 1 (�.��)

if {�(v),�(v)} is contained inG. Otherwise the entry is set to zero.

����� I��������N���

Let p be a introduce node with its unique child q and the introduced vertex v. We de�ne the set
of edgesEp as the subset of possible edges in ↵(p)which are incident to v.

Ep = {e 2 E⌧ [↵(p)]|v 2 e} = {e 2 E⌧ [�(p)]|v 2 e} (�.��)

This edges will be called introduced edges at p. By adding the introducing the edgesEp every
set E 2 E⌧ [↵(q)] could be extended by 2|Ep| possible sets of new edges. In other words the set
H⌧ will be split into 2|Ep| times more classes regarding the vertices in ↵(p).
Given E ✓ E⌧ [↵(p)] �nding the corresponding set of edges E0 in E⌧ [↵(p)] can be done

easily by restricting E to the the edges of E⌧ [↵(p)], i.e. E0 = E [ E⌧ [↵(p)]. This is possible
because the graphS[q]

E\E⌧ [↵(q)]
is a subgraph ofS[p]

E
. Note that forE 2 E⌧ [↵(p)] holdsE\Ep =

E \ E⌧ [↵(q)].

��
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Thenwecan compute IE,p(�[{(v, a)}) for alla 2 V (G) the followingway. If8u2Np(v){�(u), a} 2

E(G) holds, we set

IE,p(� [ {(v, a)}) = IE\E⌧ [q],p(�) (�.��)

otherwise IE,p(� [ {(v, a)})will be set to zero.

����� F�����N���

Let p be a forget nodewith its unique child q. Let v 2 V (G) be the vertex that has been forgotten
at p. Since only one vertex will be forgotten at p we know that ↵(p) equals ↵(q). Which means
that also the equivalence classes are identical, because nonewpossible edge has been added. Hence
E⌧ [↵(p)] = E⌧ [↵(q)] and we can access the equivalence classes with same subset of edges as its
index. For � 2 Fp andE ✓ E⌧ [↵(p)]we set

IE,p(�) =
X

a2V (G)

IE,q(� [ {(v, a)}) (�.��)

����� J��� ����

Let p be a join node with its children q1 and q2. To compute IE,p(�) we need to know which
graph in S[q1] and which in S[q2] can be combined to S[p]

E
. Since both graph must be identical

regarding the edges inE⌧ [↵(q1)] \ E⌧ [↵(q2)]we can compute the entry the following way.

IE,p(�) = IE\E⌧ [↵(q1)],q1(�) · IE\E⌧ [↵(q2)],q2(�) (�.��)

In other words, we are combining each extending homomorphism of � in ↵(q1) with each
extending homomorphism of � in ↵(q2). We access this numbers through the subgraphs of S[p]

E

in ↵(q1) and ↵(q2). This works because the following two equations hold.

• S[p]
E
[↵(q1)] = S[p]

E\E⌧ [↵(q1)]

• S[p]
E
[↵(q2)] = S[p]

E\E⌧ [↵(q2)]

��� A�������� ���A�������

It follows the pseudo-code of the modi�ed dynamic program.

Algorithm �.�: modi�ed dynamic program
� input : n i c e t r e e d e c ompo s i t i o n ⌧ and a g r aph G

� and a s t i n g y o r d e r i n g U = u1, . . . , um o f V (T )

��
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� output : hom(H ! G) f o r a l l H 2 H⌧ .
�

� f o r i = 1 t o n

� s e t p = ui

�

� i f p i s a l e a f w i th �(p) = {v}
� f o r a l l a 2 V (G)

�� s e t I;,p((v, a)) = 1

�� s e t I{v,v},p((v, a)) = 1 i f {a, a} 2 V (G) and 0 o t h e r w i s e
��

�� i f p i s an i n t r o d u c e node
�� l e t q be i t s un ique c h i l d and {v} 2 �(p)\�(q)
��

�� f o r a l l E ✓ E⌧ [↵(p)]

�� s e t Np(v) = {u 2 �(p)|{u, v} 2 E}
��

�� f o r a l l � 2 Fq and a 2 V (H)

�� i f 8u2Np(v){�(u), a} 2 E(G)

�� s e t IE,p(� [ {(v, a)}) = IE\E⌧ [q],p(�)

�� e l s e

�� s e t IE,p(� [ {(v, a)}) = 0

��

�� e r a s e i n f o rm a t i o n on node q

��

�� i f p i s a f o r g e t node
�� l e t q be i t s un ique c h i l d and {v} 2 �(q)\�(p)
�� f o r a l l E ✓ E⌧ [↵(p)]

�� f o r a l l � 2 Fp s e t IE,p(�) =
P

a2V (H) IE,q(� [ {(v, a)})
��

�� e r a s e i n f o rm a t i o n on node q

��

�� i f p i s a j o i n node
�� l e t q1 and q2 be i t s c h i l d r e n
�� f o r a l l E ✓ E⌧ [↵(p)]

�� f o r a l l � 2 Fp

�� s e t IE,p(�) = IE\E⌧ [↵(q1)],q1 · IE\E⌧ [↵(q2)],q2

��

�� e r a s e i n f o rm a t i o n on node s q1 and q2

��

�� return IE,p(;) f o r a l l E ✓ E⌧

The number of homomorphisms from a graphH 2 H⌧ to a graphG can be found in entry
IE(H),p(;).

����� C����������

The correctness follows mainly by the proof of correctness provided for the algorithm �.�. Since
the calculations themselves are similar to those of section�.�.� its correctness can be assumed.
Beyond this, it is important to verify that always the right entries will be accessed by the indexation
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over the edge sets. This property has already been shown in the previous section where all steps
have been described in more detail. Hence the correctness of the algorithm is shown.

����� T���

Lemma �.�. The algorithm �.� runs in time

O

0

@|V (G)| · |V (G)|width(⌧)+1
·

X

p2v(T )

2|E[↵(p)]|

1

A (�.��)

Proof. Since the algorithm is a dynamic program the running time canbeboundedby thenumber
of entries multiplied with the time need to compute one entry. The time needed for computing a
single entry can be bounded byO(|V (G)|). For each node p 2 V (T ) there are exactly 2|E[↵(p)]|

subsets of possible edges regarding the vertices in ↵(p). Furthermore there are |V (G)||�(p)| 

|V (G)|width(⌧)+1 mappings from �(p) to V (G). For each combination of edges and mapping
we have to compute one entry. Resulting in a running time of O(|V (G)| · |V (G)|width(⌧)+1

·

2|E[↵(p)]|) per node. Summing up this time over all nodes results in the following overall running
time.

O

0

@
X

p2v(T )

|V (G)| · |V (G)|width(⌧)+1
· 2|E[↵(p)]|

1

A (�.��)

At this point, it is also possible to extract the term 2|E[↵(p)]| out of the sum and bound it by
2|E⌧ |. However, this would result in the same running time as in the analysis of the algorithm �.�.
But the hypothetical speed up comes from the fact that 2|E[↵(p)]| is strictly smaller than 2|E⌧ | in
a signi�cant amount of nodes in T . Therefore we remain with this more �ne-grained analysis of
the running time and conclude the stated running time.

����� S����

Since the algorithm computes the homomorphism number for all graphs in parallel the amount
of additional space increases rapidly relative to the number of edges inE⌧ . The following lemma
states this more formally.

Lemma �.�. The algorithm �.� uses additional space

O
⇣
2|E⌧ | · nk+1

· log h
⌘

(�.��)

where h equals |V⌧ |.
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Proof. Looking at some node p 2 V (T )we need one entry for each combination ofmapping� :

�(p) ! V (G) and edge setE ✓ E⌧ [↵(p)]. Hence the number of entries per node is bounded
by 2|E⌧ | · nk+1 because the number of subsets of E⌧ [↵(p)] is 2|E⌧ [↵(p)]| which is obviously at
most 2|E⌧ |. And by condition � of de�nition �.� we know that the entries of at most log h + 1

nodes has to be accessible at the same time. Therefore the space complexity follows.

��
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The implementation of the algorithms presented in the previous chapters was written in Rust
and can be found here. Rust is a multi-paradigm programming language focusing on memory
safety and clean code. The Rust compiler forces the programmer to write safe code by enforcing
simple ownership rules of data by its borrow checker. The syntax of Rust is strongly orientated
by C++. Further information and a nice introduction can be found in the Rust book and the
comprehensive documentation.
The project mainly consists of four components. First of all, there is a �le handler which can

import nice tree decomposition and graphs. The format of these �les will be described in the
following section. The second component is a graph generation module. This single module
contains methods for generating E⌧ andH⌧ for a given ⌧ . These methods are used by the third
and main component, the implementation of homomorphism counting algorithms mentioned
in chapter �. The last component consists of several experiments tracing the running time of the
algorithms and comparing them. The following diagram gives an overview of the modules and
their dependencies.

Figure �.�: An overview of the project structure

��

https://www.rust-lang.org/
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��� ���� �������

The �le handler supports three di�erent �le formats. One format for nice tree decompositions
and two formats for graphs. The format representing nice tree decomposition is a modi�cation
of the tree decomposition format for the PACE challenge. The �rst graph format with the �le
extension .graph is a simpli�cation of the METIS [��] graph format. The other �le format for
graphs has the .gr extension and is the graph format originally used by the DIMACS challenge.
The following three subsections shortly explain those formats in more detail.

����� METIS

The �rst non-comment line of METIS �les contains the number of vertices of the graph and
the number of edges. Entries in this format are separated by the space character and lines by the
character \n. Comment lines start with the symbol%. The following lines represent the adjacency
of the vertices by listing the neighbours of the i-th vertex in the i-th line. Note that graphs which
have been observed in this paper are undirected and therefore each edge is represented twice.

Format �.�: METIS example
� % A gr aph w i th � v e r t i c e s and � e d g e s
� � �
� % Here b e g i n s t h e l i s t o f n e i g h b o u r s o f e a ch v e r t e x
� � �
�

�

� % The f o l l o w i n g l i n e e x p r e s s e s t h e n e i g h b o u r s ( � and � ) o f v e r t e x �
� � �
� � �

The example above represents the graph in �gure �.�.

Figure �.�: Graph represented by both formats

��
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����� DIMACS

TheDIMACS format starts with a description line where the problem descriptor, the number of
vertices and the number of edges are listed after a foregoing p. Each argument is separated by a
space and each line by \n. Comment lines start with a c. Each next line represents a single edge by
containingboth incident vertices. Herewehave to list each edgeonly once. The following example
represents the graph in �gure �.�. Note that hc stands only for homomorphism counting which
is an exemplary description of the problem.

Format �.�: dimacs example
� % A gr aph w i th � v e r t i c e s and � e d g e s
� p hc � �
� % Here b e g i n s t h e l i s t i n g o f a l l e d g e s
� � �
� � �
� � �

����� NTD

Nice tree decomposition �les have the �le extension .ntd and are structured the following way.
The �le starts with a description line containing the number of nodes, the maximum bag size and
the number of vertices of the original graph. The description line ismarkedwith an s at the begin-
ning of the line. Each argument is separated by a space and lines are separated by \n. Comment
lines begin with the character #. The next lines contain information about single nodes. These
node description lines start with ann followed by the node number and a character describing the
node type. The following characters are used to describe node types.

• l : leaf node

• i : introduce node

• f : forget node

• j : join node

The node type character is followed by the vertices represented by integers contained in the bag
of the node.
After listing the nodes, the adjacency relation of the nodes has to be described. These adjacency

lines are of simple form. They start with a foregoing a and continue with two nodes whereas
the �rst node is the parent of the second node. The following example describes the nice tree
decomposition in �gure �.�.

��
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Format �.�: ntd example
� # a s imp l e n i c e t r e e d e c ompo s i t i o n w i th � node s and o f w id th �
� s � � �
� # The f o l l o w i n g l i n e s d e s c r i b e t h e node s
� n � l �
� n � i � �
� n � f �
� n � f
� # The f o l l o w i n g l i n e s d e s c r i b e t h e a d j a c e n c y o f node s
� a � �
�� a � �
�� a � �

Figure �.�: Nice Tree decomposition described in example �.�

��� �������� ��������������

This section describes the internal representation of graphs and nice tree decompositions. This
knowledge is maybe useful for further practical improvements.

����� G����

Graphs are internally representedby adjacencymatrices providedby the external crate of petgraph.
This Rust library provides some basic graph data structures. The implementation uses the graph

��
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typeMatrixGraph to ensure edge checking in constant time. Since graphs are static after creation
the running time for vertex and edge manipulations is asymptotically uninteresting.

����� N���T���D������������

The internal representation of nice tree decompositions has beenwritten from scratch and can be
found in the tree_decomposition.rs �le. This representation mainly consists of a tree structure
realized with adjacency lists and a hashmap that maps each node to its containing data such as the
bag and the node type. The bags of nodes are represented by hash sets of unsigned integers. The
structureNiceTreeDecomposition also stores a stingy ordering, which will be computed during
the Construction of the object.

��� D���� S���� ���T�������

Algorithm �.� has been implemented in the �lediaz_serna_thilikos.rswhich also containsDP-
Data. This structure stores and organizes all necessary data for the dynamic program. The entries
of its table are stored inside two nested hash maps.
The implementation of the algorithm can be found in the diaz_serna_thilikos.rs �le. The

algorithm itself gets three arguments

�. a graphH

�. a nice tree decomposition ⌧ ofH

�. a graphG

and returns hom(H ! G). There also exists another version of the algorithm which takes only
two arguments: A nice tree decomposition ⌧ and a graphG. This version is used for testing and
includes the graph generation step. Therefore it returns hom(H ! G) for allH 2 H⌧ .

����� I������R�������������

An interesting part of the implementation is the usage of integer functions also used in a C++
implementation byNielsen, Clausen and Reeve of algorithm �.� and have been described in their
paper[��]. Integer functions are a compact way of representing a mappings f : A ! B as |A|-
digit numbers in base |B|. This representation is used todescribemappings fromabag�(p) to the
vertices V (G) of graphG. There are three methods de�ned for integer functions: apply, extend
and reduce. The implementation of these methods can be found in the integer_functions.rs
�le.

��
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Let p 2 V (T ) be an arbitrary node of the tree decomposition ⌧ . de�ne k := |�(p)| and
n := V (G). Having an order of�(p) gives each vertex in the bag a unique signi�cance between 0
andk�1. Let f be amapping from�(p) toV (G) and let int(f) its integer representation. Then
the i-th digit of int(f) contains the value of the image of the vertex v in �(p) with signi�cance
i. This requires also a partial order of vertices in V (G). As an ordering the natural order of the
vertex indices may be available. Lets explain the three methods in more detail by the following
example.

Let k = 3 with �(p) = 4, 2, 9. Using the natural ordering of the vertices we conclude that
the vertex 2 has signi�cance 0, the vertex 4 has signi�cance 1 and the vertex 9 has signi�cance
2. Furthermore let n = 4 with V (G) = 0, 1, 2, 3. The mapping f : �(p) ! V (G) with
f(2) = 3, f(4) = 1, f(9) = 0 can then be represented as the following integer

int(f) = 3 · 30 + 1 · 31 + 0 · 32 = 3 + 9 = 12 (�.�)

For better readability, the integer representation of a function will simply be denoted by the
function itself. Given the basis n, the integer representation f of the mapping f and the signi�-
cance s the apply(n,f,s) function returns the digit d with signi�cance s of f . The digit d can be
computed by the following equationwhich basically shifts all digits smaller than s to the right and
then takes the last digit.

d = bf/ns
c mod n (�.�)

For additional given value v the extend(n,f,s,v) function inserts the value v to digit s and shifts
all digit with signi�cance higher than s one to the left. This is realised by the following calculation.
First separate the digits rwith signi�cance smaller than s by r = f mod ns. These digits remain
in their position. The digits lwith the signi�cance of at least s can then be obtained by f � r. All
digits in l have to be shifted one to the left bymultiplying themwith the basis n. Adding l ·n and
r together would result in a number where the digit with signi�cance s would have value 0. By
multiplying v with ns the value v will be put to the s-th digit. Summing up the newmapping f⇤

will be computed by the following formula.

f⇤ = n · l + v · ns
· r (�.�)

Given the basis n, a mapping f and the signi�cance s, the method reduce(n,f,s) removes the
digit with signi�cance s and shifts all digits with greater signi�cance one to the right. The digits
with signi�cance smaller than s stay in place. Therefore we can compute r = f mod ns and
later add them to the newnumber. To get all digitswith higher signi�cancewe can simply subtract

��
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those digits of f which has signi�cance at most s, i.e. l = f � (f mod ns+1). These digits have
to be shifted one to the right by dividing them by n. For the newmapping f⇤ we get

f⇤ = l/n+ r (�.�)

��� M�������D������ P������

The implementation of the modi�ed dynamic program is nearly identical to the implementation
of algorithm �.�. Mappings are also saved as integer functions and the computational steps them-
selves follow the same program logic. The implementation of themodi�ed dynamic program can
be found in the �lemodi�ed_dp.rs. The function executing the modi�ed dynamic program is
calledmodi�ed_dp, which takes two arguments: a tree decomposition ⌧ and a graphG.
The main di�erence between both algorithms lies in the table that is used by the dynamic pro-

gram. Since the table has been extended by edge sets, those have to be represented in some way.
The following subsection describes the representation of edge sets.

����� E���R�������������

Asmentioned in section �.� subsets of the possible edges can be represented as a bit vector. There-
fore the program�xes an ordering of possible edges by giving each edge an index. Then each subset
of edges can be represented as a vector of bits, where a bit is set to one if and only if the corre-
sponding edge is contained in the set. The intersection and the union of two edge sets can then
be realized by simple bitwise operations. The union of two sets can be realized by a bitwise OR
and the intersection by a bitwiseAND.

��� T��� ��������������

There are in general two types of tests that have been implemented in this project. First of all,
we have unit tests checking the correctness of the implemented methods and structures. Those
can be found in the �le unit_tests.rs and have been implemented using Rust’s unit test environ-
ment. This allows simple execution of the unit test by using the command "cargo test". Then
we have the performance experiments implemented in the �le experiments.rs. The aim of the
experiments is on one hand to compare the actual running time with the theoretical analysis. On
the other hand, they should check if the modi�ed dynamic programmay be faster than the origi-
nal one. These tests have been written by scratch and can be executed with the run_experiment
functionwhich takes a�le as an argument. This�le contains a binarymatrix statingwhich combi-
nations of nice tree decompositions and graphs should be tested. The results will then be written
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into a CSV �le containing the following columns: The names of the nice tree decomposition
and the graph �le, important parameters of both, �measurements of the original DP and �mea-
surements of the modi�ed DP with its means. Example �.� tests the following combinations.
the �le ntd_bench_�.ntd will be tested together with randgraph_�_�.graph but not with rand-

graph_�_�.graph, but ntd_bench_�.ntdwill be tested with both.

Format �.�: Experiment Matrix Example
� , r a ndg r aph_�_� . g r aph , r andg r aph_�_� . g r a ph
� ntd_bench_� . ntd , � , �
� ntd_bench_� . ntd , � , �

��
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��� E����������

����� I��������

Some test instances were created by hand but themajority of instances were created by generators.
This section shortly explains the types of instances thatwere created by generators. The generators
are all written in python and can be found in the python directory of the project.
The �rst generator can be found in the �le random_graphs.py. This generator simply gener-

ates graphs with n = 2i vertices for some i 2 N and randomly selects edges. Each graph is then
written into a graph �le represented in theMETIS format. The �le name contains the number of
vertices and the number of edges.
Additional there are three generators for nice tree decompositions. The �rst generator con-

structs a nice tree decomposition ⌧ with width k � 1 and 2k nodes for a given parameter k 2 N
of the following form. Simply introduce k�1 vertices after the �rst vertex has been introduced in
a leaf. Then forget the vertices one after another. The setH⌧ therefore is the set of all subgraphs of
the complete graph with k vertices and self-loops and therefore |E⌧ | =

�
n+1
2

�
= n(n+1)

2 . These
nice tree decompositions are called in�ated nice tree decompositions. This generator can be
found in the in�ated_ntd.py �le.

Figure �.�: In�ated Nice Tree Decomposition on the left yielding the possible edges on the right
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The secondgeneratorproducespathnice tree decompositons andcanbe found in thepath_ntd.py
�le. These nice tree decompositions consist of 2k nodes for a given k 2 N and havewidth 1. They
are made of alternating introduce and forget nodes while all bags except the root have at least one
vertex contained. Therefore |E⌧ | = 2n � 1. The pattern simply introduces a new vertex and
then forgets the vertex that has been introduced before.

Figure �.�: A path-like Nice Tree Decomposition on the left yielding the possible edges on the right

The third generator is located in the �le �xed_length_path_ntd.py and produces instances
similar to those of the previous generator. Given two arguments n, j 2 N with j < n the
generator constructs a nice tree decomposition of width 2 and |E⌧ | = n + j while �xing the
number of nodes to 2k and the number of vertices to n. The pattern of this generator works as
follows. For j = 0 each introduced node and the leaf is followed by a forget node with an empty
bag. ThereforeE⌧ consists only of self-loops. For j = 1 the setE⌧ will additional have the edge
{1, 2}. Therefore the �rst(on the leaf to root path) forget node will be changed to an introduce
node with the bag containing 1 and 2, which adds the edge toE⌧ . And the following introduce
node becomes a forget node with the bag containing 2. This generator allows to scaleE⌧ between
n and 2n� 1while �xing all other parameters of the nice tree decomposition.
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Figure �.�: A path-like Nice Tree Decomposition of �xed length on the left yielding the possible edges on
the right. In this example j equals 1.

����� R������T��� �� ���A���������

This section independently considers experimental results regarding the running time of the algo-
rithm and compares them to the theoretical running times. Let us resume the theoretical running
time of the three algorithms. First of all, we have the running time for the brute force algorithm,
which iterates through all mappings and check if they are homomorphisms or not. The run-
ning time of the brute force algorithm isO(2|E⌧ | · |V (G)||V⌧ | · |E⌧ |). The running time of the
dynamic program of Díaz, Serna and Thilikos has the running timeO(2|E⌧ | · |V⌧ ||V (G)|k+1

·

min {k, |V (G)|})wherek denotes thewidth of ⌧ . Themodi�ed dynamic program fromchapter
� has a theoretical running time ofO

⇣
|V (G)| · |V (G)|k+1

·
P

p2v(T ) 2
|E[↵(p)]|

⌘
. The running

time of the algorithms will be stated in microseconds.

Figures �.� and �.� show the running time of the brute force algorithm in relationship to the
parameters |E⌧ | and |V (G)| in logarithmic representation. In Figure �.� a exponential growth of
the running time in relation to |E⌧ | can be observedwhen looking at the tendency of the running
time. Also an exponential rise in relation to V⌧ is noticeable in �gure �.�. Figure �.� on the other
hands shows how the brute force algorithm behaves when �xing ⌧ and increasing V (G).
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Figures �.� shows the running time of the dynamic program of Díaz, Serna and Thilikos in
relation to the number of possible edges |E⌧ |. The strictly increasing exponential curve of the
running time matches the theoretical assumptions. Figure �.� shows its running time plotted
against |V (G)|. The linear behaviour in the logarithmic representation correlates to the polyno-
mial |V (G)||k+1|. Hence the theoretical analysis �ts the experimental results.
Nearly the same results can be seen in �gures �.� and �.� for the modi�ed dynamic program.

The measured data in �gure �.� underlie a little bit greater scattering in comparison to �.�. The
graph in �gure �.� shows a linear growth in its logarithmic representation which correctly relates
to the term |V (G)||k+1|.
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Figure �.�: running time of the brute force algorithm in relationship to |E⌧ |

Figure �.�: running time of the brute force algorithm in relationship to |V (G)|
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Figure �.�: running time of the DP of Diaz,Serna & Thilikos in relationship to |E⌧ |

Figure �.�: running time of the DP of Diaz,Serna & Thilikos in relationship to |V (G)|
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Figure �.�: running time of the modi�ed DP in relationship to |E⌧ |

Figure �.�: running time of the modi�ed DP in relationship to |V (G)|

����� R������T���C���������

Figure �.�� shows the running time of the three algorithms plotted against |E⌧ | in a linear repre-
sentation and �gure �.�� shows the same data in logarithmic representation. It can be seen clearly
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that the modi�ed dynamic program is faster than the original dynamic program by Diaz, Serna
and Thilikos for the test instances used in the experiment. But this result has to be stated care-
fully since the last twomeasurements for the modi�ed dynamic program cant be measured prop-
erly. The upper two orange dots are missing their green equivalent. This may be an indication
of a much larger running time of the modi�ed dynamic program caused by some unpredictable
side e�ects such as memory overload. The biggest test instance had a set of possible edges with
|E⌧ | = 23 which would lead to at least 223 ⇡ 8.3 ⇥ 106 entries stored simultaneously in the
table of the root node and this is a lower bound for the space. Hence missing memory may be a
real reason for this slowdown.

Figure �.�� compares the running time of all three algorithm in relation to V (G)where ⌧ was
�xed. All three algorithms seem to have the same behaviour when the only changing parameter
is V (G). Surprisingly, both dynamic programs are slower than the brute force algorithm for this
small �xed ⌧ . The nice tree decomposition used for those experiments has only three possible
edges and all edges are contained in one single bag. Therefore it is plausible that the brute force
algorithm is faster because both dynamic programs also perform some kind of brute-forcing over
all mappings regarding one bag.

Figure �.�� shows the average running time needed for one graph for each instance plotted
against |E⌧ |. In the range of the test instances, the modi�ed dynamic program is faster than both
other algorithms in the majority of instances.

Figure �.��: running time comparison in relationship to |E⌧ | in linear representation
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Figure �.��: running time comparison in relationship to |E⌧ |

Figure �.��: running time comparison in relationship to |V (G)|
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Figure �.��: average running time per graph in relationship to |E⌧ |

��� �������

In summary, the following results can be listed. This work provides a theoretical modi�cation of
thedynamicprogramofDiaz, Serna andThilikos to solve the extended counting graphhomomor-
phism problem. Additionally, a simple brute force algorithm was presented. All three algorithms
together with a �le-handler and necessary subroutines have been implemented and evaluated ex-
perimentally. The modi�ed dynamic program solves the problem faster than the original one for
the majority of test instances. But the modi�ed dynamic program needs exponential more space
for the computation and is therefore impracticable for greater instances. To be more precise the
modi�ed dynamic program was not able to solve the problem for tree decomposition providing
23 possible edges or more. But within this range, the modi�ed dynamic program yields a faster
running time. This algorithm can now be used to create test sets for counting graph homomor-
phism algorithms.

����� F������ E�����������

The last section is now dedicated to further ideas and possible modi�cations. These notes are
separated into two parts. The �rst part consists of possible practical improvements to the imple-
mentation and the second part deals with theoretical enhancements. Since all of these ideas are
mostly not related, they are simply listed in the following.

��



�.� summary

Practical Enhancements

• Adjusting the hash functions for the table of the dynamic program may decrease the run-
ning time.

• Another question is, whether it is possible to e�ciently translate all the computational steps
into matrix operations. Those could be e�ciently computed by the GPU.

• The implementation of the algorithm works serially. Parallelizing some of the calculations
may decrease the running time as well.

Theoretical Enhancements

• The setH⌧ is characterizedby ⌧ and thereforewe cannot represent an arbitrary set of graphs
with a single ⌧ . The question that arises here is whether we can �nd for an arbitrary set of
graphs G a minimum set of tree decompositions ⌧1, . . . , ⌧m such that G ✓ H⌧1 [ · · · [

H⌧m . The termminimum in this context can be interpreted in several ways. It couldmean
to minimizem or to minimize |H⌧1 [ · · · [ H⌧m\G|. Whereby the latter can be solved
trivially if self-loops are neglected by simply creating one tree decomposition per edge.

• The speed-up of the modi�ed dynamic program is based on e�ciently �nding isomorphic
subgraphs during the computation by checking the identity of the labelled graphs. An-
other way of �nding may be identifying isomorphic subtrees in the tree decomposition by
canonizing them. This is based on the idea that if two subtrees produce isomorphic graphs
when looking at the possible edges and we can �nd such an isomorphism e�ciently then
we only have to compute only the entries of one of the subtrees.

• Somenice tree decompositions contain redundant information in someof their nodes. The
natural question that arises from this observation is whether we can reduce the size of a
tree decomposition while keeping the setH⌧ identically. More precisely, given a (nice) tree
decomposition ⌧ is there another (nice) tree decomposition ⌧ 0 such that H⌧ = H 0

⌧ and
|V (⌧ 0)| < |V (⌧)|. Furthermore, we can ask if there is an e�cient routine to compute ⌧ 0.
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