
SYSTEMATIC EVALUATION OF GRAPH

SAMPLING METHODS

by

Jasper Forth

under the supervision of

Prof. Dr. Holger Dell

and

Dennis Vetter

A document submitted in partial fulfillment of the requirements for the degree

Bachelor of Science

at

Goethe University Frankfurt

Abstract

In this work, we comprehensively evaluate the node2vec and the CrossWalk random walk-

based sampling for generating graph embeddings of social networks. To this end, we have

investigated various combinations of several hyperparameter configurations to generate differ-

ent embeddings for various datasets. For selecting the underlying datasets, we defined subsets

of a social network in terms of certain features. The resulting embeddings were systematically

examined concerning their fairness and accuracy. For this purpose, we used a semi-supervised

node classification as a downstream task to evaluate the quality of the embeddings generated

by different samplingmethods and the trade-off between accuracy and fairness. It was shown

that the configuration of the hyperparameters of node2vec and CrossWalk significantly affects the

resulting graph representations in both directions and thus either increases or decreases the

prediction accuracy or the fairness for selected features.

iii

Zusammenfassung

Die vorliegende Arbeit ist eine umfassende Bewertung von node2vec und CrossWalk und ein-

hergehendenmodifiziertenRandom-Walk-Strategien zur Erzeugung vonGraph-Einbettungen

sozialer Netzwerke. Hierzu haben wir verschiedene Kombinationen von unterschiedlichen

Hyperparameter-Konfigurationen untersucht, mit dem Ziel, verschiedene Einbettungen für

mehrere unterschiedliche Datensätze zu erzeugen. Für die Auswahl der zugrundeliegenden

Datensätze wurdenTeilmengen eines sozialenNetzwerks hinsichtlich bestimmterMerkmale

definiert. Die resultierenden Einbettungen wurden systematisch hinsichtlich ihrer Fairness

und ihrer Genauigkeit untersucht. Zu diesem Zweck haben wir als nachgelagerte Aufgabe

eine semi-supervised Knotenklassifikation eingesetzt, um so Qualität der durch verschiedene

Sampling-Methoden erzeugten Einbettungen und den Zielkonflikt zwischen Genauigkeit und

Fairness zu bewerten. Es konnte gezeigt werden, dass die Konfiguration der Hyperparameter

von node2vec und CrossWalk die resultierenden Graph-Einbettungen in beide Richtungen sig-

nifikant beeinflusst und somit entweder die Vorhersagegenauigkeit oder die Fairness in Bezug

auf bestimmte Merkmale deutlich verbessern.

v

Contents
List of Figures ix

List of Tables xi

1 Introduction 1

2 Preliminaries and Assumptions 3
2.1 Graph Representation . 3

2.2 Node Classification . 8

2.3 Fairness . 13

3 Related Work 17
3.1 DeepWalk . 17

3.2 Node2vec . 20

3.3 CrossWalk . 22

4 Experimental Setup 27
4.1 Data . 27

4.2 Implementation . 31

4.3 Hyperparameter . 31

4.4 Evaluation . 32

5 Results 35
5.1 Results Overview . 35

5.2 Parameter Sensitivity . 41

6 Conclusion 51

7 Appendix 53

Bibliography 63

vii

List of Figures
2.1 Undirected- and Directed Graphs . 3

2.2 Homophily and Structural Equivalence 4

2.3 Traversal-based Sampling: BFS and DFS 5

2.4 Random Walk Based Graph Embedding 7

2.5 Bias in Machine Learning . 10

2.6 Fairness Interventions in Machine Learning 13

2.7 Graph embeddings with colored sensitive attributes 14

3.1 CBOW and Skip-gram . 18

3.2 Overview of DeepWalk . 19

3.3 The Search Bias in node2vec . 20

3.4 Les Misérables Co-Appearance Network . 22

3.5 Neighborhood proximity in CrossWalk . 23

3.6 CrossWalk’s Influence on Edge Weights . 25

4.1 Attribute distribution in the Pokec snapshot 28

4.2 Pokec sub-graphs . 29

4.3 Label Propagation . 33

5.1 Results compared for varying parameter settings on sub-graph (a) 37

5.2 Graph embedding for sub-graph (a) . 38

5.3 Group related results compared for node2vec and CrossWalk on sub-graph (a) 39

5.4 Results compared for varying parameter settings on sub-graph (b) 40

5.5 Graph embedding for sub-graph (b) . 41

5.6 Group related results compared for node2vec and CrossWalk on sub-graph (b) 42

5.7 Results compared for varying parameter settings on sub-graph (c) 43

5.8 Graph embedding for sub-graph (c) . 44

5.9 Group related results compared for node2vec and CrossWalk on sub-graph (c) 45

5.10 Effect of walk length on node2veck . 46

5.11 Effect of parameter q on node2veck . 47

5.12 Effect of pre-walk length on CrossWalk . 48

5.13 Effect of parameter α on CrossWalk . 49

ix

List of Tables
2.1 Multi-class confusion matrix . 11

4.1 Characteristics of the Pokec network snapshot 27

4.2 Characteristics of the Pokec sub-graph (a) 29

4.3 Characteristics of the Pokec sub-graph (b) 30

4.4 Characteristics of the Pokec sub-graph (c) 30

4.5 Hyperparameter characteristics . 31

4.6 Experimental hyperparameter settings . 32

5.1 Results of the classification on a 50% training-set on sub-graph (a) 36

5.2 Results of the classification on a 50% training-set on sub-graph (b) 40

5.3 Results of the classification on a 50% training-set on sub-graph (c) 43

7.1 Results of a classification with a 10% training-set on sub-graph (a) 53

7.2 Results of a classification with a 25% training-set on sub-graph (a) 54

7.3 Results of a classification with a 50% training-set on sub-graph (a) 55

7.4 Results of a classification with a 75% training-set on sub-graph (a) 56

7.5 Results of a classification with a 10% training-set on sub-graph (b) 57

7.6 Results of a classification with a 25% training-set on sub-graph (b) 57

7.7 Results of a classification with a 50% training-set on sub-graph (b) 58

7.8 Results of a classification with a 75% training-set on sub-graph (b) 58

7.9 Results of a classification with a 10% training-set on sub-graph (c) 59

7.10 Results of a classification with a 25% training-set on sub-graph (c) 59

7.11 Results of a classification with a 50% training-set on sub-graph (c) 60

7.12 Results of a classification with a 75% training-set on sub-graph (c) 60

xi

1 Introduction
In any development regarding human-aligned artificial intelligence (AI) systems in general

and machine learning models in particular, fairness should be of essential concern to en-

sure robust and secure systems. Whether it is to comply with legal regulations, meet users’

demands, or increase the acceptance of AI systems. Concerning AI-related tasks for social

networks, two questions are of particular interest:

(1) How can such networks best be represented by computers, i.e., using the rich and highly

complex structural information of such networks in the most effective way?

(2) How can we ensure that for the automated predictions and recommendations based on

such complex structures, the machine learning algorithms do not reveal specific sensitive

information or discriminate against individual users based on such sensitive information?

Recently, with the growing interest regarding fairness in machine learning, some solutions

have been proposed to address the fairness issue in network representations. For the appli-

cation of machine learning tasks, as part of AI systems, on network structures, it is necessary

to somehow represent such network features with reduced complexity. With this represen-

tation, it is essential to convey as much accurate and relevant information as possible from

the network. Regarding their quality, these network representations require to be evaluated

in terms of both asked questions, accordingly, for (1) accuracy and (2) fairness.

This work comprehensively evaluates the node2vec and CrossWalk randomwalk biasingmeth-

ods for generating node embeddings. Therefore, we searched through various combinations

of multiple hyperparameters to generate multiple embeddings on various datasets. We se-

lected the underlying datasets from a real-world social network based on specific graph fea-

tures. We evaluate the resulting embeddings systematically in terms of fairness and accuracy.

To base the introduction of our experiments and results, we first outline the theoretical

foundation of the corresponding areas, primarily based on graph theory, machine learning,

and fairness. After that, we consider related work with a strong focus on the examined

algorithms. Finally, we present our experimental setup and results and conclude with a

discussion of our findings.

1

2 Preliminaries and Assumptions
In this chapter, we concisely outline the preliminaries and assumptions underlying this pa-

per. We do not aim to provide a detailed elaboration of all corresponding foundations, as

this would exceed the scope of this paper. These foundations include multiple domains:

graph theory, machine learning, and fairness. This chapter provides a concise overview of

each area and a founding intuition to place the following definitions and methods.

Therefore, we first briefly overview the graph-related foundations and assumptions. Fur-

ther, we introduce graph sampling and graph representation. Then we provide a brief

overview of this paper’s machine learning foundations and methods. Moreover, finally, we

introduce fairness definitions and methods.

2.1 Graph Representation

Graphs, as a non-linear data structure, represent a universal language for the modeling

and description of complex relational systems from a broad spectrum of domains. These

domains include networksmodeling physical structures, information networks, and networks

representing social structures [ZYZZ18]. Within the scope of this paper, we use them to

represent social networks.

Graphs

Let G = (V,E) denote a connected graph containing a set of nodes, with vi, i ∈ N, n :=

|V |,E and a set of edges eij , (i, j) ∈ V ×V ,m := |E|. Moreover, for this paper, we assume

graphs to be bi-directional, as this fits our use case for social networks. With bi-directional,

we refer to a graph where the edges are bi-directional, i.e., eij = eji, see figure 2.1b, where

G = G′, as in figure 2.1, if and only if the graph is unweighted or all weights are equal.

v1

v2 v3

v4
G

(a) Undirected graph G.

v1

v2 v3

v4
G′

(b) Bi-directed graph G′.

Figure 2.1: Undirected- and (bi-)directed graphs.

3

2 Preliminaries and Assumptions

Hence, we assume graphs as weighted; the edge weight, see equation (2.1), can differ for

each direction. With edge weight, we refer to a function w : E → R, which assigns a real

value to each edge, s.t.

eij =

w(ij) if (vi, vj) ∈ E

0 otherwise,
(2.1)

with w(ij) ≥ 0. If (vi, vj) ∈ E and w(ij) is undefined, we assume w(ij) = 1. Further, let

N (vi) = {vj |(vi, vj) ∈ E}, (2.2)

denote node vi’s immediate neighborhood, the set of nodes that are directly connected to vi

by an edge eij . Moreover, we denote the number of direct neighbors |N (v)|. Additionally,
concerning the assumed bi-directional graphs, the degree of node v, deg(v), defined as the

number of edges incident to v, is equal to the number of direct neighbors |N (v)|. Therefore,
|N (v)| = deg(v). Consequently |N (v)| is the 1st-order neighborhood of v and eij the 1

st-

order proximity of vi and vj . With the 1st-order proximity, we emphasize pairwise node

similarities [Xu21, ZYZZ18].

Homophily and Structural Equivalence

A node’s immediate neighborhood is strongly connected to its features. Regarding social

networks, this is often referred to as homophily, describing the tendency of direct connec-

tions to similar nodes and as structural equivalence, i.e., the tendency to have the same

neighborhood structure as similar nodes [TMKM18].

(a) Label colors reflecting homophily. (b) Label colors reflecting structural equivalence.

Figure 2.2: Different structural properties of nodes in the same graph [TMKM18].

For instance, regarding social networks, the homophily hypothesis addresses this pairwise

node similarity locally, i.e., see figure 3.4a. In general, theories about homophily suggest that

nodes with similar labels are more likely to be connected than nodes with different labels.

4

2.1 Graph Representation

The structural equivalence hypothesis addresses global similarities based on neighborhood

structures [MCC+03, Xu21, ZYZZ18]. For instance, regarding social networks, the struc-

tural equivalence hypothesis, see figure 3.4b, describes that nodes with similar labels tend to

have similar neighborhood structures [HGER+12].

Graph Sampling

We need information about pairwise node similarities to represent social network graphs

concerning homophily and structural equivalence features. The classic approach, using

neighborhood matrices, becomes unfeasible complex for large sparse graphs, i.e., real-world

social networks [LL10]. One solution to this problem is to sample graph neighborhoods.

In this work, we study such sampling methods. These graph sampling methods aim to

approximate the structural properties via pairwise neighborhood similarities using neigh-

borhood samples. The authors of [HL13, WCA+16] group the typical neighborhood sam-

pling approaches for graphs into three categories: (i) vertex sampling, (ii) edge sampling, and

(iii) traversal-based sampling.

This work uses traversal-based sampling methods, precisely (biased) random walks. Note

that the classic breadth-first search (BFS) and depth-first search (DFS), which are traversal-

based sampling methods, but not random walks, can approximately be seen as extreme

cases of random walks due to their properties [GL16]. Therefore, before we define (biased)

random walks and how we approximate BFS and DFS, we concisely outline them.

Breadth-First-Search and Depth-First-Search

BFS and DFS differ in the way they reveal the graph structure. One exposes homophily, the

other structural equivalence. Referencing figure 2.3 and starting with node u := v, in both

Figure 2.3: Breadth-First-Sampling and Depth-First-Sampling [GL16].

strategies, each neighborN (u) is considered by the search. Accordingly, which node is taken

into the sample by the algorithm and is visited differs for BFS and DFS. The BFS algorithm

5

2 Preliminaries and Assumptions

searches in-breadth first, i.e., if the walk length k = 3, see figure 2.3 (red), the search is limited

to the first-order neighborhoodN (u) = {s1, s2, s3}. Only if all nodes inN (u) were visited

and |N (u)| > k, BFS considers the farther neighborhood, and so on. Accordingly, the

sample contains the k-many nearest neighbors of the root node v. In contrast, the DFS

algorithm searches in-depth first. Therefore, DFS visits only one node in N (u), and after

that, visits again only one node in this node’s neighborhood, i.e., N (u1) \ {u}, and so on.

The DFS search distances quickly from the root node u.

Regarding the representation of graph features and structural properties, it was shown that

BFS emphasizes structural equivalence properties, e.g., nodes with a high degree deg(v) tend

to be similar, see s3 and s8 in figure 2.3. DSF, however, is more likely to reveal homophily

properties since nodes in the same neighborhood tend to be similar [GL16]. With this, if

a graph representation is, i.e., a priori, supposed to represent either homophily features or

structural equivalence features, BFS and DFS can be used as references for random walk

biasing.1

Random Walks

Let v ∈ V be an arbitrary node in the graph G and

Wk(v) = (u0, u1, ..., uk−1), (2.3)

be a k-step random walk starting at node v, with u0 := v and k � n, meant to sample a

small portion of the graph. [GL16]. Nodes in a walk-sequence do not need to be unique,

e.g.,Wk(v) can contain multiple occurrences of the same node.

Given a node ut−1 in a walk-sequence Wk(v), see equation (2.4), we select the node ut

from the neighborhood of the previous node N (ut−1) with probability

P (ut = y|ut−1 = x) =

πxy

Z if (x, y) ∈ E

0 otherwise,
(2.4)

where π is the unnormalized transition probability, with πxy = w(xy), and
πxy

Z the normal-

ized transition probability, with Z =
∑

z∈N (x)w(xz) [KKB+22, GL16]. Random walks

are more likely to traverse edges with higher weights.

1The classic BFS and DFS algorithms are deterministic and sample each node only once per traversal. This is

true for the resulting sample, even if the search is repeated multiple times and is testing nodes multiple times

in one search. This is different for random walks.

6

2.1 Graph Representation

If modified systematically, biased random walks can reveal or mask certain information in

graph representations. We discuss random walk biasing methods in chapter 3.

Graph Embeddings

The objective of graph embeddings is the reduction of the complexity of a graphs’ repre-

sentation and, at the same time, maintaining the graphs’ structure. One reason for graph

representation in a latent vector space is to enable the use of machine learning algorithms.

Machine learning algorithms, however, are not able to process graphs directly due to their

high complexity.

With graph embedding, we describe the projection of all nodes in a given graph into a latent

vector space, the embedding space. Assume graph G = (V,E) and let φ : V → Rn×dim

denote the projection to the embedding, which maps each node vi ∈ V to a vector φ(vi) =

zi ∈ Rdim, i = 1, . . . , n, with dim as the embedding dimensionality. Figure 2.4 illustrates

an exemplary embedding process based on random walks. The encoding model Skip-gram is

described regarding related work in chapter 3.

Figure 2.4: Pipeline for random walk based graph embeddings [Xu21].

In general, graph embeddings should capture and represent the structural properties of a

graph, as effective and efficient as possible [Xu21]. These graph properties are strongly

related to pairwise similarities between nodes and can be either or both, of (i) local origin, in

case of homophily, and of (ii) global origin, in case of structural equivalence.

If encoded in a latent vector space, node similarities can approximate the actual graph’s

structure based solely on these embeddings by using similarity measures such as, i.e., the

dot-product or the euclidean distance [Xu21, HYL17]. Accordingly, graph representations

in such embedding spaces enable downstream machine learning tasks on graph data and

social networks [HYL17]. The three main approaches for the encoding of graphs are:

7

2 Preliminaries and Assumptions

(i) Matrix-factorization-based methods, (ii) random-walk-based methods, and (iii) neural-

network-basedmethods [Xu21]. In the context of this paper, we limit ourselves to the second

approach, namely random-walk-based methods, as in figure 2.4, which we further examine

in chapter 3, related work.

2.2 Node Classification

Machine learning models have become part of many facets of our everyday lives. We typi-

cally use machine learning for problems being too complex to solve deterministically. One

typical application is classification. In this work, we use node classification to evaluate the

quality of graph representations resulting from various graph sampling strategies. The fol-

lowing briefly outlines the classification concept, its application to graphs and common clas-

sification metrics. For a more in-depth understanding, we refer to the textbooks understand-

ing machine learning [SSBD14] and an introduction to statistical learning [JWHT13], on

which we based our introduction.

Machine Learning

In general, learning describes a process considered successful when a learner gains expertise

from some experience. Concerning machine learning, the model is successful if it can gen-

eralize from training samples to unknown problems [Wig19]. The samples and unknown

problems need to fulfill particular requirements. Those requirements concern that data

points are independent and identically distributed (i.i.d.) with a measurable distance be-

tween them, e.g., located in euclidean space. Therefore, we assume the data points as a

vector in Rn, n ∈ N [SSBD14]. This assumption is fulfilled by the graph representation in

a latent vector space, as described.

Any machine learning model can be described by a function h : Z → Y , which denotes a

hypothesis, where Y is the set of labels and classes, with ylc ∈ Y ⊂ RY , where Y describes

the labels and classes. Z is the set of features, with zi ∈ Z ⊂ Rn, n ∈ N. We assume Z as

the set of all possible features, i.e., the above-mentioned node embedding, and Y is the set

of all possible labels.

Let hS be a hypothesis trained on a training set S = {(z1,y1), ..., (zm,ym)} ⊂ Z × Y ,

where zi ∈ Z and yi ∈ Y . The training set S should be as informative, independent,

discriminating, and representative as possible regarding Z and the underlying distribution

of Y . We denote the underlying distribution, the real concept c, by c : Z → Y . Machine

8

2.2 Node Classification

learning aims to find a hypothesis hS that generalizes well to new, unseen data points, i.e.,

hS ≈ c [Wig19]. With this, we define the generalization error as

Ec(h) = P
z∼c

[h(z) 6= c(z)]. (2.5)

The generalization error is the probability that the hypothesis h makes a wrong prediction.

However, since c : Z → Y is unknown to the learner, we cannot compute the generalization

error directly.

Supervised- and Unsupervised Classification

We can assign a training process of machine learning classification to numerous various

categories, of which we only want to elaborate on two, namely supervised learning and un-

supervised learning. In supervised learning, the labels are known for all training samples, s.t.

yi = c(zi) : ∀zi ∈ S.With this, we provide the learner with correct examples of the target

output for training purposes.

Accordingly, the learner is trained by minimizing the empirical loss, denoted

Es(hS) :=
m∑
i=1

ls(hS(zi),yi), (2.6)

where ls is a loss function for supervised learning, i.e., the entropy loss, which is defined

by ls(h(zi),yi) := − log(h(zi)yi) [ITAC19]. To optimize the model hS : Z → Y , the

learner aims to minimize the empirical error in equation (2.6) and thus, to maximize the

prediction

ŷ = argmax
hS

hS(z). (2.7)

Unsupervised learning, in contrast, provides the learner with an input set of raw, unlabeled

data S ⊂ Z. The learner then aims to find patterns to group the data points into clusters.

With this, the learner aims to minimize the consistency loss, which encourages coherence

among different transformations of samples and is appliable to labeled and unlabeled data.

Therefore, let

Eu(hS) :=
m∑
i=1

lu(hS(zi), hŜ(ẑi)), (2.8)

denote the unsupervised loss, where hŜ can be equal to hS as well, as a different, set of

functions. Additionally, ẑi is a transformed version of zi. Further, lu describes the loss

function for the unsupervised learning, i.e. the euclidean distance, lu(hS(zi), hŜ(ẑi)) :=

‖zi − ẑi‖2 [ITAC19].

9

2 Preliminaries and Assumptions

Validation

With learning by a sample set S, there are two common problems. Let over-fitting and

under-fitting describe biases caused by characteristics of the training set [JWHT13, SSBD14].

Over-fitting occurs when the learner is too specific about the training data. As a result, the

error is minimal on the training data, but the model cannot generalize well to unknown

problems. Under-fitting occurs when the training data is not specific enough for the learner,

resulting in a high variance in predictions on the unknown concept c : Z → Y .

Figure 2.5: Bias in machine learning: over-fitting and under-fitting. Training (Ein) and generalization

(Ein) error as function of training size. [MBW+19].

To further evaluate the desired generalization of the so inferred function hS : S → Y , we

define a test set T ⊂ Z \ S. T has to be unknown by the learner. The test set T is used

to evaluate the generalization error of the hypothesis hS . Considering the training biases of

a machine learning classification model, splitting the data into a training set and a test set

only once can lead to unbalanced data, negatively impacting the representation. To avoid

possible incorrect representations by the splitting, we can use cross-validation.

Cross-validation describes the systematic resampling of the training sample into several

chunks of training and test data, i.e., splitting S into a training set Si = S \ Ti and a test set

Ti = S \ Si. Cross-validation is used for the best possible evaluation of the generalization

error of a model, especially if the data, or the classes, are imbalanced. Ideally, splitting the

training and test set is done so that every (zi) ∈ Z is at least once a test sample and a training

sample. With this, we can apply appropriate metrics to evaluate the model’s generalization

[SSBD14].

Classification Metrics

In order to evaluate the performance of a node classification model, let hS : Z → Y

be a classification model trained on a training set S ⊂ Z and tested on T ⊂ Z \ S.

10

2.2 Node Classification

We further assume binary labels (z,y) ∈ {0, 1}, and denote the predicted label by ŷ.

Consequently, a prediction, is correct if ((x, ŷ), (x,y)) = (0, 0) or (1, 1) and is not cor-

rect if ((z, ŷ), (z,y)) = (0, 1) or (0, 1). With this we distinguish the following categories

[HM15, VR18]:

(i) true positive (TP): ((z, ŷ), (z,y)) = (1, 1),

the predicted label is positive, and the actual label is positive,

(ii) true negative (TN): ((z, ŷ), (z,y)) = (0, 0),

the predicted label is negative, and the actual label is negative,

(iii) false positive (FP): ((z, ŷ), (z,y)) = (1, 0),

the predicted label is positive, and the actual label is negative, and

(iv) false negative (FN): ((z, ŷ), (z,y)) = (0, 1),

meaning the predicted label is negative, and the actual label is positive.

These four categories can be extended tomulti-class labeling problems [KLPS12,KBŠBŠ20,

PVG+11]. Therefore, in table 2.1 we introduce themulti-class confusionmatrix for (z,y) ∈
0, 1, 2, 3 regarding label-prediction. In terms of a multi-class evaluation, we capture the re-

Predicted Class

Label 0 Label 1 Label 2 ...

0 1 2 4 0 1 2 4 0 1 2 4 ...

A
ct
u
a
l
C
la
ss 0 TP FN FN FN TN FP TN TN TN TN FP TN ...

1 FP TN TN TN FN TP FN FN TN TN FP TN ...

2 FP TN TN TN TN FP TN TN FN FN TP FN ...

3 FP TN TN TN TN FP TN TN TN TN FP TN ...

Table 2.1: Multi-class confusion matrix

lation of the predicted label to the actual label for every class separately, Meaning, as in

table 2.1, if we evaluate label 2, we consider label 2 as True and labels 0, 1, and 3 as False.

We count occurrences for each class individually for the categories TP, TF, FP, and FN.

Based on the named categories, we can obtain common classification measures: Equa-

tion (2.9) and equation (2.11) are measures for the positive class, i.e., the class with the true

label. Equation (2.10) is a measure of the model’s overall performance. Equation (2.12) is

11

2 Preliminaries and Assumptions

a measure for the overall performance of the model and is a combination of equation (2.9)

and equation (2.11).

Precision :
TP

TP + FP
, (2.9)

Accuracy :
TP + TN

TP + TN + FP + FN
, (2.10)

Recall :
TP

TP + FN
, (2.11)

F1− Score :
2 · Precision ·Recall

Precision+Recall
. (2.12)

Note that in the case of a multi-class evaluation, accuracy is not a suitable metric for imbal-

anced data because it is not sensitive to class distribution. Especially if the data is imbalanced,

i.e., the positive class is underrepresented, a model can achieve high accuracy by predicting

the negative class for all instances in this class. In this case, the model does not detect the

positive class but achieves high accuracy. Therefore, in multi-class labeling and for unbal-

anced datasets, the F1-Score is a more appropriate metric to evaluate the performance of a

classification model as it combines precision and recall, the measures for positive labels, and

better fits imbalanced class distribution [HM15, VR18].

We further distinguish three cases of averaged measures for each for labels-based classifica-

tion metrics [PVG+11, KBŠBŠ20]. Therefore, let hS be the classifier over set S and B(hS)
any measure, defined in equation (2.9) till equation (2.12), for the classifier hS . Further we

assume C the classes for S, wc the weight of class c ∈ C, with
∑

c∈C wc = 1, and Bc the

measure for class c, with Bc(hS) =
∑

s∈S I(s = c). With this in mind, we denote the

average values for the above-defined metrics as follows:

Bweighted(hS) =
∑
c∈C

wc · Bc(hS), (2.13)

as the weighted sum for each class separately. With equation (2.13), we can account for

unbalanced datasets with the weighted measure by considering the relative proportion.

Bmicro(hS) = B
(∑
i∈S

TPi,
∑
i∈S

TNi.
∑
i∈S

FPi,
∑
i∈S

FNi

)
. (2.14)

The micro measure equation (2.14) is the global measure for all classes combined.

Bmacro(hS) =
1

|S|
∑
i∈S

B(TPi,TNi, FPi, FNi). (2.15)

With the macro measure equation (2.15), we describe the unweighted mean of the measures,

which can be problematic with unbalanced datasets. We further describe our application of

metrics tomeasure the accuracy, regarding the experimental setup of this work, in section 4.4

12

2.3 Fairness

2.3 Fairness

In machine learning, the term fairness is often used synonymously with justice. These two

terms are different, as justice is a normative concept, while fairness is a descriptive concept

[KKBK21]. Consequently, fairness involves morality, and justice involves justification, e.g.,

ethics and law. In this work, we use the term fairness to describe the ethical concept of justice.

Further, as the fairness-enhancing sampling method we study is based on group fairness, we

focus on group-related fairness.

Group Fairness

Generally, group-related fairness is concerned with the distribution of outcomes among

groups of individuals, also called distributive justice, describing the allocation of goods and

services in a society [KKBK21]. The main concepts of distributive justice are:

(i) Egalitarianism: everyone is equal and should be treated equally.

(ii) Equality of opportunity: everyone should have an equal chance to succeed.

(iii) Desert: everyone should be rewarded according to their merits.

(iv) Sufficientarianism: everyone should be rewarded according to their needs.

(v) Prioritanism: everyone should be rewarded according to their priority.

In machine learning, we can consider the allocation of resources as a consequence of pre-

dictions or decisions made by a machine learning model as a form of distributive justice

[KKBK21]. Fairness intervention approaches in machine learning can be parted into three

categories, see figure 2.6: (i) pre-processing, concerning the data collection and prepara-

tion, i.e., the data itself, (ii) in-processing, concerning the model training, i.e., the model

and hyperparameter settings, and (iii) post-processing, concerning the model outcome, i.e.,

emphasizing interventions [CLL22, CH20].

Figure 2.6: Categories of fairness interventions in machine learning [CH20].

13

2 Preliminaries and Assumptions

According to the survey [CH20], most fairness approaches in machine learning are based

on the notion of sensitive attributes, which also can define unprivileged groups. This sen-

sitive attribute can be, i.e., age, gender, religion, or sexual orientation, and should best be

masked in the graph representation to avoid discrimination and bias. Hiding these attributes

is challenging with graphs, as graph structures contain complex information about proxies

and relations for sensitive attributes, which can reveal sensitive attributes [CH20].

In this paper, we focus on group fairness based on sensitive attributes and the in-processing

category, as we aim to evaluate different sampling methods. For further discussion of other

fairness concepts in machine learning. [CH20, CLL22, LRKS18].

Fairness Metrics

According to [CH20], there are various fairness metrics for in-processing-based approaches,

which need to be more consistent in their definition or interpretation of what fair means. As

we aim to evaluate the fairness of graph representations with different sampling methods,

we focus on the invariance of graph embeddings to sensitive attributes [BH19]. In other

(a) Clustered by sensitive attribute classes. (b) Invariant to sensitive attribute classes.

Figure 2.7: Graph embeddings colored accordingly to sensitive attribute classes.

words, we consider a graph representation fair if it does not reveal sensitive attributes. With

this, concerning social networks, we include three aspects of fairness: (i) privacy, concerning

the protection of sensitive attributes, (ii) bias, the unfair treatment of groups based on sen-

sitive attributes, and (iii) discrimination, the unfair treatment of individuals based on their

belonging to a sensitive attribute class.

Therefore, we focus on particular fairness based on the representational invariance of graph

embeddings regarding sensitive attributes. This invariance can be seen as a pragmatic user-

centric approach, i.e., if the user is concerned with the privacy of sensitive attributes and

14

2.3 Fairness

therefore does not want to have such attributes revealed, the graph representation should be

invariant to this very attribute [BH19].

Modeling of Fairness

Let G = (V,E, Y,A) be a graph, where V is the set of nodes, E is the set of edges, yi ∈
Y ⊂ N as the target attributes, av ∈ A ⊂ N as the sensitive attributes of node v ∈ V ,

and ŷv and âv the corresponding predicitons. Further, let φ(v) = zv ∈ Rdim denote the

embedding of any node v ∈ V .

Let the pairwise independence of the node embeddings and the sensitive attributes be

zv ⊥⊥ av, ∀v ∈ V, (2.16)

denoting the representational invariance of a node embedding zv to a sensitive attribute

av. With equation (2.16), we assume the mutual information I(av, zv) ≈ 0 and expect the

sensitive attribute as not revealed by the node representation. This invariance as pragmatic

fairness approach [BH19] satisfies various group-related fairness criteria, i.e., the classifica-

tion of the target attribute can not be influenced by the sensitive attribute if the underlying

graph representation is invariant to this embedding.

From I(av, zv) ≈ 0 and equation (2.16) follows that for every v ∈ V any classification, or

prediction, ŷv on a given node representation zv, with target label yv and sensitive attribute

av, satisfies the notions of

(i) statistical parity P (ŷv|av) = P (ŷv),

(ii) equality of odds P (ŷv|av,yv) = P (ŷv|yv),

(iii) equality of accuracy P (ŷv|av,yv) = P (ŷv|yv),

(iv) equality of opportunity P (ŷv|av, zv) = P (ŷv|zv),

among others concerning the sensitive attribute.

Consequently, discrimination, i.e., the unfair treatment of individuals, and bias, i.e., the

unfair treatment of groups, based on a specific attribute, hardly emerge if the graph repre-

sentation is invariant to this very attribute. In the section 4.4, we outline how we evaluated

the invariance of the graph embeddings to sensitive attributes.

15

3 Related Work
Among the various graph representation methods outlined in section 2.1, we focus only

on the most related work concerning graph embeddings created from random walks. In

the following, we introduce DeepWalk, as it is the pioneering method to generate graph em-

beddings from random walks with a natural language processing approach. After that, we

outline node2vec, a more recent and generalized method that improves upon DeepWalk. Fi-

nally, concerning the fairness of graph representations, we introduce CrossWalk, a method

that enhances the fairness of any random walk-based graph embedding algorithm.

3.1 DeepWalk

The authors of Deepwalk: Online Learning of Social Representations [PARS14] aimed to learn

graph representations of social networks by sampling uniform random walks. The resulting

DeepWalk algorithm is a natural language processing-based approach for learning graph em-

beddings from local neighborhoods generated by truncated random walks. This approach

is extendable to not only social networks but various graphs.

The underlying natural language processing (NLP)method is Skip-gram. This neural network-

basedmethod to learn word embeddings was introduced byMikolov et al. [MCCD13]. The

general idea behind Skip-gram is that if words appear in a similar context, they tend to have

similar meanings. Therefore, the aim is basically to predict the context of a word, thus, the

most probable neighboring words in a sentence. This idea was shown to translate well to the

graph domain if we think of words as nodes, sentences as walks, and the context of a node

as a set of neighbors.

Modeling of DeepWalk

Let G = (V,E) be a bi-directional weight graph with V as the nodes and E as the edges.

Assume Wk(v) = (u0, u1, ..., uk−1), with wi ∈ V , w0 := v, and a walk length k for an

arbitrary node v ∈ V . If this walk is thought of as a sentence in a unique language, the

analog to the NLP models, see figure 3.1 1, is to estimate the likelihood of the next node wk

given the previous k − 1 nodes, leading to P [wk|w0, ..., wk−1] [PARS14].

1In this context, a window describe a short sequence of words with a specified length.

17

3 Related Work

However, since the goal of DeepWalk is to learn graph embeddings, we are interested in

the probability of a node, given its context, which is the set of the nodes’ neighbor’s node

embeddings. Therefore, let φ : v ∈ V → Rn×dim, n = |V | denote a node embedding,

Figure 3.1: Continuous Bag-of-Word Model (CBOW) and Skip-gram [MCCD13].

see section 2.1. In accordance to the Continuous Bag-of-Word Model (CBOW) [MCCD13], the

problem can be formulated as

P [wt | (φ(w0), φ(w1), . . . , φ(wt−1))], (3.1)

where wt is the next node in the sequence, and φ(w1...w−1) being the node embeddings.

Hence, since the projection φ is represented by a matrix of n× dim free parameters, the

computation of equation (3.1) becomes unfeasible for large graphs [PARS14].

DeepWalk’s solution to this problem mentioned above is to reverse equation (3.1). In line

with Skip-gram, see figure 3.1, we can write this negative sampling approach as

min
φ

− log P[{wi−k/2, . . . , wt−1, wt+1, . . . , wi+k/2} | φ(wt)]. (3.2)

Consequently, the prediction is conditioned by the node wt rather than the entire neighbor-

hood. The authors of Deepwalk then use the very Skip-gram algorithm [MCCD13], to solve

equation (3.2), which can be formulated as

max
φ

∑
v∈V

log P(Wk(v) | φ(v)), (3.3)

describing the log probability of observing a neighborhood of a node v given its embedding

[GL16]. Hierarchical Softmax is further used to speed this process up. For this, a sequence of

18

3.1 DeepWalk

nodes (window) in a walk are grouped into a binary tree, see figure 3.2. With this, the prob-

lem is reduced to a binary classification problem. Assume a specific path (b0, b1, ..., bdlogne)

in the tree; then the optimization problem can be written as the probability

P [wt | φ(wu)] =

dlogne∏
l=1

P [bl | φ(wu)], (3.4)

withwt = bdlogne andwu being the parent node ofwt in the binary tree [PARS14]. Stochas-

tic gradient descent is then used to optimize the parameters of the neural network. We refer

to [GL16, MCCD13, PARS14] for a more detailed description of the algorithm.

The DeepWalk Algorithm

Altogether, the Deepwalk algorithm samples a stream of short, uniform random walks rooted

at randomly chosen nodes on the given graph G. The algorithm then updates the encod-

ing, respectively the node embedding, by optimizing the Skip-gram likelihood objective equa-

tion (3.3), more precisely equation (3.4). Figure 3.2 illustrates the steps DeepWalk takes to

learn graph embeddings.

Figure 3.2: Overview of the DeepWalk algorithm [PARS14].

In conclusion, DeepWalk is a scalable unsupervised method to learn latent graph embed-

dings. It was shown by the authors of [PARS14] that the algorithm performs well, even on

sparsely labeled data. This performance is somehow surprising, considering that the Deep-

Walk algorithm only considers the 1st-order proximity of nodes in a graph and, therefore,

captures more local structure information, and the global structure information is probably

not well-represented [Xu21].

19

3 Related Work

3.2 Node2vec

The authors of node2vec: Scalable Feature Learning for Networks [GL16] proposed a generaliza-

tion of DeepWalk. The node2vec algorithm is, like DeepWalk, an unsupervised method to learn

latent graph embeddings from social networks. Moreover, just as well as DeepWalk, it applies

to various graphs.

The main difference between node2vec and DeepWalk is the opportunity to modify random

walks by introducing two parameters p and q. This generalization allows biased random

walks, in contrast to the uniform random walks of DeepWalk. The authors stated that node2vec

is designed as ’[...] a flexible neighborhood sampling strategy which allows us to smoothly

interpolate between BFS and DFS.’ [GL16]. Besides the ability to simulate several sam-

pling strategies, node2vec is based on the same objective, precisely equation (3.3), the negative

sampling, and the Skip-gram. Hence, in contrast to DeepWalk, the objective is not optimized

by hierarchical softmax but by stochastic gradient descent. For a further description of this

optimization, we refer to [GL16], as it is not the focus of this paper.

Modeling of node2vec

Assume a similar foundation as in DeepWalk, see section 3.1, with a bi-directional weighted

graph G = (V,E), walks Wk(u), and we assume N (v) the neighborhood of a node v, see

equation (2.2). Let πvx denote the unnormalized transition probability for random walks

from node v to node x, with (v, x) ∈ Wk(u), and πvx = w(vx), according to equation (2.4).

To modify random walks in such a way as to influence representations of graph structures

in encoded latent representations, the authors of [GL16] introduced what they named a 2nd-

order random walk. This 2nd-order random walk aims to modify walks based on a search

bias, which accounts for a broader neighborhood.

Figure 3.3: The search bias β in node2vec [GL16].

Therefore, let βpq(t, x) denote the search bias, which is based on two hyperparameters p

and q, andN (v)∪N (t), the union, and therefore the 2nd order neighborhood of the actual

20

3.2 Node2vec

node v and the previous node in the walk, which we denote t. Further, let x ∈ N (v) be the

next possible node in the walk.

With this, the new transition probabilities for the random walk are set by πvx := w(vx) ·
βpq(t, x), where

βpq(t, x) :=

1
p if dist(tx) = 0,

1 if dist(tx) = 1,

1
q if dist(tx) = 2.

(3.5)

In equation (3.5) dist(tx) denotes the shortest distance between t and x in the graph, see

figure 3.3.

Consequently, with the two hyperparameters p and q, we can control the search bias α.

Whereas p controls the probability of returning to the previous node in the walk and q con-

trols the probability of exploring a new node, which leads to the following intuitions, based

on figure 3.3 and according to [GL16]:

q: With q > 1, the randomwalk tends to explore the 1st order neighborhood of t, result-

ing in a more inward-, or local walk, s.t. the random walk approximates the breadth-

first search (BFS) strategy.

With q < 1, the randomwalk tends to visit nodes farther away from the previous node

t, leading to a more outward walk, s.t. the random walk approximates the depth-first

search (DFS) strategy in a broader sense.

p: For any p > max(q, 1), the walk is less likely to turn back to the previous node t.

Consequently, a larger q encourages exploration and avoids the walk redundancy.

For any p < min(q, 1), the random walk is more likely to turn back to the previous

node t. Consequently, a smaller q encourages backtracking, which leads to a more

local walk in the root node neighborhood.

For example, regarding figure 3.4a, the parameter where set to p = 1 and q = 0.5, resulting

in a biased random walk tending towards a DFS approximation, and therefore reveals the

homophily structure in the graph. In figure 3.4a, the parameter where set to p = 1 and

q = 2, resulting in a biased random walk tending towards a BFS approximation, which

reveals the structural equivalence in the graph. Moreover, the random walk with p = 1 and

q = 1 is the equivalent to the uniform random walk of DeepWalk [GL16].

21

3 Related Work

(a) Label colors reflecting homophily. (b) Label colors reflecting structural equivalence.

Figure 3.4: Embeddings of the Les Misérables co-appearance network concerning different structural

properties [GL16].

The node2vec Algorithm

Altogether, node2vec is a two-step algorithm, which is based on the same objective asDeepWalk

[PARS14], see equation (3.3). The first step is to generate multiple truncated random walks,

which are biased based on 2nd-order neighborhoods and the hyperparameter p and q. The

second step is to train a Skip-gram model to generate a latent graph embedding that reveals

the graph structure controlled by hyperparameter settings.

The authors of [GL16] have shown, that node2vec can smoothly interpolate between the

approximations of the BFS andDFS strategies and the uniform randomwalk. Consequently,

node2vec can reveal homophily and structural equivalence in a latent graph representation.

The authors further demonstrated that node2vec outperformsDeepWalk and various other, not

random, walk-based, methods for multi-label classification and link prediction.

3.3 CrossWalk

To our knowledge, there are only two methods directly related to the fairness of random

walk-based graph embeddings. The first method was Fairwalk [RSBZ19] and, its generaliza-

tion, the second method, was CrossWalk [KKB+22]. Our focus is on CrossWalk as it was the

only published algorithm for enhancing fairness in random walk-based graph embeddings

concerning node classification.

With CrossWalk: Fairness-enhanced Node Representation Learning the authors [KKB+22] intro-

duced a method designed to modify random walks by grouping nodes to modify random

walk processes systematically. This modification is based on the assumption that a random

walk process, initiated in a given sensitive attribute group, biased towards nodes on the group

boundary or in other groups, leads to fairness-enhanced graph representations.

22

3.3 CrossWalk

Therefore, the core idea of this fairness-enhancing approach is to systematically re-weight

edges based on their proximity to group boundaries before applying any randomwalk-based

graph embedding methods, such as DeepWalk or node2vec.

Modeling of CrossWalk

LetG = (V,E,A) be a bi-directional weighted graph with a set of nodes V , a set of edgesE,

and the sensitive attribute classes a ∈ A. With this, we assume nodes are assigned to groups,

representing the sensitive classes a ∈ A. We write these groups of nodes as {V1, . . . , Vc}
for c := |A| . Additionally, av denotes the group to which the node v belongs. Further we

assume random walksWk(v), rooted in node v ∈ V , with length k and unnormalized tran-

sition probabilities πxy = w(x, y), with (x, y) ∈ V , according to equation (2.4) [KKB+22].

The authors of [KKB+22] proposed the modification of the transition probabilities π̂xy

based on the proximity of node x to the group boundary. Therefore, let

cfn(x) =

∑
i∈(1,...,r)

∑
y∈Wl(x) I[ax 6= ay]

r · l
, (3.6)

denote the proximity of a node x to other groups based on r-many shortened random walks

of length l, where I[ax 6= ay] is the indicator for visited nodes assigned to other groups.

Consequently, cfn(x) describes the expected number of times the walk W l(x) visits a node

from a different group. With this, nodes closer to group boundaries tend to have a more

colorful neighborhood and, therefore, a higher cfn(x) value [KKB+22].

For example, in figure 3.5 node u ∈ S, which is close to the group boundary of the red

class S, is better connected to the blue and green groups than w ∈ S, which would lead to

a higher cfn(u), than cfn(w) value.

Figure 3.5: Neighborhood proximity in the CrossWalk algorithm [KKB+22].

23

3 Related Work

In addition to the proximity of a node to other groups, the authors of [KKB+22] introduced

sets of nodes defined by the neighborhood groups. Therefore, let

Cx = {∪y∈N (x)cy | cx 6= cy}, (3.7)

denote the set of different groups in the 1st-order neighborhood of node x and |Cx| their
count, let

N+
x = {y ∈ N (x) | cx = cy}, (3.8)

denote the set of all nodes from the same group in the 1st-order neighborhood of node x,

and let

N−
x = {y ∈ N (x) | cx 6= cy}, (3.9)

be the set of all nodes from different groups in the 1st-order neighborhood of node x.

For example, in figure 3.5, we have the following sets:

Cu = {∪y∈N (x)cy | cx 6= cy} = {blue, green}, with |Cu| = 2,

N+
u = {y ∈ N (u) | cu = cy} = {three red nodes}2, and

N−
u = {y ∈ N (u) | cu 6= cy} = {one green, and two blue nodes}.

The authors of [KKB+22] introduced α ∈ (0, 1) and exp ≥ 1, to control random walks

based on cfn(x), equation (3.6) and the neighborhood groups, Cx, N+
x , and N−

x . Let

π̂xy =

πxy · (1− α) · cfn(y)exp∑

z∈N+
x

πxz ·cfn(z)exp if y ∈ N+
x

πxy · α · cfn(y)exp

|Cx|·
∑

z∈N−
x

πxz ·cfn(z)exp if y ∈ N−
x ,

(3.10)

denote the new modified and normalized transition probability for an edge (x, y) ∈ V , with

1−α as the sum of edges only connecting a node x to the same group, see, i.e., (v1, v7) and

(v1, v8) in figure 3.6, and α
|Cx| as the sum of edges connecting a node x to different groups,

see, i.e., (v1, vi), i = 2, . . . , 6 in figure 3.6, where wxy, w
′
xy ≡ πxy, π̂xy.

The authors of [KKB+22] showed that larger (i) α up weight edges connecting different

groups and down weights edges connecting nodes from the same group, and (ii) exp con-

trols the influence of the group proximity value cfn(x) on the transition probability. Con-

sequently, larger values for α and exp lead to a higher probability of visiting nodes from

different groups, as shown in figure 3.6.

2Assuming bi-directional edges.

24

3.3 CrossWalk

Figure 3.6: CrossWalk’s α’ influence on edge weights connecting different groups [KKB+22].

The CrossWalk Algorithm

The CrossWalk algorithm takes a weighted graphG = (V,E,A), with specified node groups

based on sensitive attributes, as input. To calculate cfn(x) CrossWalk initiates random r-

many short random walks, see equation (3.6), for every node v ∈ V . Then CrossWalk

calculates the new transition probabilities π̂xy for every edge (x, y) ∈ E based on equa-

tion (3.10). Finally, CrossWalk returns a modified graphGfair with the modified edgeweights

wfair(x, y) = π̂xy, ∀(x, y) ∈ E. On this resulting graphGfair, we can apply random walk

algorithms, such as DeepWalk and node2vec, to obtain fairness-enhanced node embeddings.

The authors of [KKB+22] demonstrated that CrossWalk enhances the fairness, as statistical

parity, of random walk-based node embeddings for node classification and link prediction

tasks.

25

4 Experimental Setup
In the following, we present the experimental setup. We first define the data sets used in

this work. Then we describe the sampling procedure and the evaluation metrics. Finally,

we describe the evaluation process.

4.1 Data

Before we define the data generation process, we introduce the Pokec social network used

for our experimentations. Pokec 1 is the most popular online social network in Slovakia, and

was even before the rise of facebook [Fac04], regarding Stanford Network Analysis Project (SNAP)

[LK14]. The anonymized dataset we use is a snapshot of the network, crawled in May

2012 by the authors of [TZ12]. See table 4.1 and figure 4.1 for some of the Pokec network

snapshots characteristics2.

Pair- Public- Public-

Nodes Edges Friends dist.* Men Woman contacts age

Abs. 1, 632, 803 30, 622, 564 – 4.67 802, 556 831, 725 1, 088, 838 1, 125, 734

Rel. – – – – 0.4911 0.5089 0.6662 0.6888

Avg. – – 22.181 4.67 – – – –

Max. – – 13, 840 6 – – – –

*Avg. of 100 randomly chosen pairs

Table 4.1: Characteristics of the Pokec network snapshot [TZ12].

The anonymized data is available from SNAP3, (i) as a directed edge list, with anonymized

id’s instead of user names, containing all connected node pairs, and (ii) a file containing the

user profile data with multiple attributes for each user id. We filtered this social network

graph to generate sub-graphs that meet various structural properties which fit our purpose.

The three main goals for the filtering of the data are:

(i) The reduction of the network’s complexity, respectively size, to run the experiments on

the available hardware within the scope of this work.

1https://pokec.azet.sk
2The Pokec dataset distinguishes friendship relations, as is-friend and has-friend. For simplification, we assume a

bi-directional connection in either case
3http://snap.stanford.edu

27

https://pokec.azet.sk
http://snap.stanford.edu

4 Experimental Setup

(a) Age distribution (b) Node degree distribution

Figure 4.1: Distributions of age and node degree in the Pokec snapshot [TZ12].

(ii) To generate graphs with a specific, semi-synthetic4 structure;

(iii) The generation of classes for the target attributes and sensitive attributes, tending some-

what to be slightly unbalanced in order to simulate real-world data and to be able to

assess sampling methods concerning unbalanced data.

Note that we expect the predictions to be accurate for the target attributes. For the sensitive

attributes, we expect the predictions inaccurate to fit the invariance aspect of fairness, see

section 2.3. Concerning this, we filter the Pokec graph by two attributes, one is the region,

describing the place of living and the other one is the age; both attributes we expect to

correlate with friendship connections, respectively pairwise node similarities. To further

generate three unbalanced classes for the groups based on the sensitive labels, we used the

following thresholds for the attribute age:

- group 0 with age ≤ 19,

- group 1 with age ∈ [20, 22], and

- group 2 with age ≥ 23.

The so-filtered network contains only nodes with public age information; we further filtered

for regions. For this, we selected regions in such a way as to generate three subgraphs with

expected properties described in the following. For a visualization of the resulting graphs,

see figure 4.2, generated with igraph and DrL5 [CN06]. The three subgraphs are:

(a) the distinct; three distinct small towns with few connections, see figure 4.2a,

(b) the semi-distinct; two regions with two towns in each region and therefore more con-

nections between the town-pairs and less between the regions, see figure 4.2b, and

(c) the mixed, five adjacent city districts with many connections, see figure 4.2 (c).

4With semi-synthetic, we describe real-world data selected to approximate desired structural characteristics.
5DrL is a force-directed graph layout toolbox focused on real-world, large-scale graphs.

28

4.1 Data

For each sub-graph, we labeled the selected region classes with numeric values, represented

as colors in the visualizations, in figure 4.2c.

(a) The distinct sub-graph. (b) The semi-distinct sub-graph. (c) The mixed sub-graph.

Figure 4.2: The generated Pokec sub-graphs.

Table 4.2, table 4.3, and table 4.4 summarize the characteristics of each of the sub-graphs,

assuming G = (V,E), with |Cv ∈ V |, see equation (3.7), as the number of groups in the

1st-order neighborhood N (v).

Sensitive attribute groups Target attribute groups

0 1 2 0 1 2

D
is
ti
nc
t
su
b
-g
ra
p
h
(a
)

Nodes 3, 156

Edges 13, 667

Density 0.002745

Path len. (avg.) 5.9579

|Cv ∈ V | = 0 3, 087 1, 736

|Cv ∈ V | = 1 571 19

|Cv ∈ V | = 2 849 50

Group (abs.) 1, 089 602 1, 456 416 1, 493 1, 247

Group (rel.) 0.3479 0.1907 0.4613 0.1318 0.4730 0.3951

Table 4.2: Characteristics of the distinct Pokec sub-graph (a).

Due to the different structures of the data sets, we can consider not only different parameter

settings but also the influence of different network structures on random walk samplings

within our experiments.

29

4 Experimental Setup

Sensitive attribute groups Target attribute groups

0 1 2 0 1 2 3
S
em
i-
di
st
in
ct
su
b
-g
ra
p
h
(b
)

Nodes 10, 812

Edges 39, 840

Density 0.000681

Path len. (avg.) 6.5558

|Cv ∈ V | = 0 6, 425 7, 050

|Cv ∈ V | = 1 1, 613 2, 093

|Cv ∈ V | = 2 2, 774 631

|Cv ∈ V | = 3 – 1, 038

Group (abs.) 2, 726 1, 875 6, 211 3, 568 3, 477 980 2, 787

Group (rel.) 0.2521 0.1734 0.5744 0.3300 0.3216 0.0906 0.2578

Table 4.3: Characteristics of the semi-distinct Pokec sub-graph (b).

Sensitive attribute groups Target attribute groups

0 1 2 0 1 2 3 4

M
ix
ed

su
b
-g
ra
p
h
(c
)

Nodes 16, 695

Edges 28, 556

Density 0.000205

Path len. (avg.) 6.6091

|Cv ∈ V | = 0 11, 601 8, 645

|Cv ∈ V | = 1 1, 957 3, 147

|Cv ∈ V | = 2 3, 137 1, 453

|Cv ∈ V | = 3 – 3, 079

|Cv ∈ V | = 4 – 317

Group (abs.) 2, 232 2, 427 12, 036 6, 171 4, 201 1, 880 4, 008 435

Group (rel.) 0.1337 0.1454 0.7209 0.3696 0.2516 0.1126 0.2401 0.0260

Table 4.4: Characteristics of the mixed Pokec sub-graph (c).

30

4.2 Implementation

4.2 Implementation

In order to meet the objectives of this work, namely the analysis of different sampling meth-

ods, we selected two graph sampling algorithms that offer the most generalized approaches

to the simulation of random walks.

(i) The node2vec algorithm is the most generalized random walk-based algorithm available,

see section 3.2,. With node2vec’s ability to generate various graph embeddings by biasing

random walks and the resulting samplings, we can compare the results of different sam-

pling methods, as, i.e., DeepWalk, BFS, and DFS, approximated by specific hyperparameter

settings. (ii) The CrossWalk algorithm is the most generalized available algorithm for the

modification of random walks targeting fairness enhancing of resulting graph embeddings.

While node2vec is available as a stable GitHub repository 6 [Coh18] based on [GL16], Cross-

walk was available embedded in a Deepwalk implementation, regarding the related publica-

tion [KKB+22] 7 [Kha21]. To better match our purpose, we extended the node2vec imple-

mentation to include the CrossWalk algorithm. The modified node2vec method allows us

to perform the intended experiments with or without the CrossWalk modification through

additional parameter settings.

4.3 Hyperparameter

Table 4.5 is a summary of the hyperparameter used in our experiments, with the actual

possible values for each parameter and the neutral value if existent. Each parameter fits the

respective introduction of the algorithms in chapter 3.

Para- Parameter Possible Neutral

meter Name values value Intuition

p Return- p > 0, p ∈ R 1 if q = 1 small p: local walks, larger p: exploring walks.

q In-out- q > 0, q ∈ R 1 if p = 1 q < 1: approx. DFS, q > 1 : approx. BFS.

α Alpha α ∈ (0, 1) – α biases walks to cross-group borders.

exp Exp exp ≥ 1, exp ∈ R 1 exp biases the walk towards group borders.

k Walk length w > 0, w ∈ N – Walk length for W , see equation (2.3).

l Pre-walk length l > 0, w ∈ N – Walk length for cfn, see equation (3.6).

dim Dimensions dim > 0, dim ∈ N – Dimension for the node embeddings.

Table 4.5: Hyperparameter characteristics.

6https://github.com/eliorc/node2vec
7https://github.com/ahmadkhajehnejad/CrossWalk

31

https://github.com/eliorc/node2vec
https://github.com/ahmadkhajehnejad/CrossWalk

4 Experimental Setup

Table 4.6 presents the values used for the experiments, separately for each, the pure sam-

pling setting with node2vec, and the fairness-enhancing sampling setting, node2vec extended by

CrossWalk. For the targeted values, we performed a grid search over the sets in the column

experimental values. We set other parameters, not in the scope of this paper, to the default

values regarding the source implementations. These default parameters, including such for

Skip-gram, set by the actual node2vec implementation mentioned above. Further, we did not

change the parameter for the number of walks per node, which we set to the default value

10, and for dim, the dimension of the node embeddings, which we set to the default value

128.

Para-

meter Experimental values Idea

p 0.1, 0.25, 1, 2.5, 10 Cases for returning, exploring, and unbiased walks

C
ro
ss
W
al
k

no
de
2
ve
c

q 0.1, 0.25, 1, 2.5, 10 Cases for returning, exploring, and unbiased walks

k 40, 80, 120, 160 Examine the effect of the walk length

p 0.1, 1, 10 Cases for returning, exploring, and unbiased walks

q 0.1, 1, 10 Cases for DFS and BFS approximation, and unbiased

walks

k 80 Default 80

l 4, 6, 8 Examine the pre-walk length regarding cfn

α 0.01, 0.05, 0.1, 0.25, 0.4, Examine the group-border crossing

0.5, 0.6, 0.75, 0.9, 0.99

exp 1, 1.5, 2.5, 4, 6, 10, 15, 25 Examine the biasing toward other groups.

Training-split 0.1, 0.25, 0.5, 0.75 Examine the effect of the labeled samples proportion.

Table 4.6: Experimental hyperparameter settings.

4.4 Evaluation

In this section, we describe how we evaluate the performance of the examined sampling

methods for (i) fairness, the embedding of the sensitive attribute, and for (ii) accuracy, the

embedding of the target attribute. In both cases, we use the same evaluation setup and the

same evaluation metrics, as described in the following.

Node Classification

For the evaluation of the resulting graph embeddings, we used a semi-supervised classi-

fication task, namely LabelPropagation for node classification [ZG02]. For semi-supervised

LabelPropagation, assume that the labels of nodes are only known for some of the nodes. With

32

4.4 Evaluation

this, the machine learning model is supposed to iteratively group the data into categories

based on similarities in their embedded features and a few labels, see figure 4.3.

Figure 4.3: LabelPropagation with few labeled nodes [ITAC19].

Further, we used cross-validation to evaluate the performance of the embeddingmethods on

the node classification task in a general way. With this, we created various sets with different

train and test set sizes. As the train set, we provided node embeddings with known labels,

and as the test, we provided node embeddings with unknown labels and used the labels only

for the evaluation.

For LabelPropagation 8 and Stratified Cross Validation9 we used the implementation provided

by [PVG+11]. With this classification setting, we trained various classification models with

different train-test-split ratios and evaluated them as described in the following section 4.4.

Accuracy Evaluation

Wedecided to use the F1-score as themain evaluationmetric for the quality of the embedding

methods regarding the various parameter settings, as the F1-score is the harmonic mean of

the precision and recall, see equation (2.12). We evaluated the weighted, the macro, and the

micro version of the F1-score and the individual scores for every group.

As further reference, we also measured the accuracy, see equation (2.10) and the variance

in accuracy regarding the groups of the respective other attributes, meaning the sensitive

groups for the target attribute and vice versa.

Fairness Evaluation

To assess the fairness and the invariance of a graph embedding, we use the F1-score, which

we utilize to measure the invariance as a proxy for the fairness of the embedding. Therefore,

we classify and evaluate the sensitive attribute using two reference values. One is absolute,

8https://scikit-learn.org/stable/modules/generated/sklearn.semi_supervised.LabelPropagation.html
9https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedShuffleSplit.html

33

https://scikit-learn.org/stable/modules/generated/sklearn.semi_supervised.LabelPropagation.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedShuffleSplit.html

4 Experimental Setup

measured by the relative share of the class regarding the whole set of attribute holders, and

the other is relative to a specific node sampling setup.

(i) In the first case, the embedding would be invariant to the sensitive attribute class if the

F1-score corresponds to the class proportion, thus being equally distributed so that the

outcome could just as well have been guessed randomly, i.e., if the class proportion is

0.5, the F1-score should be 0.5.

(ii) In the second case, we measure the effect of hyperparameter settings, which explicitly

influence the fairness of embeddings, with a referential baseline, i.e., a related sam-

pling with constant hyperparameters. With this, we can measure the effectiveness of

the hyperparameter settings on the invariance of the embedding regarding the sensi-

tive attribute class, i.e., by comparing the F1-score for each parameter setting of the

embedding with the F1-score of the baseline.

For the comparison of the results, we should keep in mind that the biasing of random walks

by the CrossWalk is based on the sensitive attribute, which is not the case for the node2vec

method. We examine the embedding for the effect of this very biasing on the whole em-

bedding. We, therefore, use the quality of the target attribute as a proxy and node2vec as a

baseline.

34

5 Results
In the following, we outline the achieved results. In every case, we compare the two main

methods, namely the node2vec and CrossWalk. Also, we compare the results for the different

label classes, the target, and the sensitive attributes. Additionally, we review results for sev-

eral hyperparameters, as walk length, p, and q in the case of node2vec and the pre-walk length,

α, and exp for CrossWalk. Regarding the closer look at the selected hyperparameter, we also

consider the influence of the training split on the classification results.

5.1 Results Overview

The following tables show the calculated mean, median, minimum, and maximum of the

mean F1-scores for the results of node classifications. These node classifications, based on a

50% labeled training set and five-fold cross-validation, were learned on various embeddings.

These embeddings were generated on all scheduled hyperparameters settings, as listed in ta-

ble 4.6. We calculated the F1-scores as weighted, micro, andmacro, as well as for each group

separately. The F1-scores are further extended by the overall accuracy and the variance, as

mentioned in the experimental setup. See, table 5.1 for the distinct sub-graph (a), table 5.2

for the semi-distinct sub-graph (b), and table 5.3 for the Mixed sub-graph (c).

Moreover, we illustrated the abovementioned F1-scores as line plots; see figure 5.3 for sub-

graph (a), figure 5.6 for sub-graph (b), and figure 5.9 for sub-graph (c). For these plots, we

used the mean of the F1-scores, for the same classification setting as above, as the y-axis.

Additionally, we projected the proportion of the attribute class for each group related F1-

Score. For CrossWalk, the x-axis represents the value of parameter α, and the different colors

represent the values of parameter exp. The parameters p and q are set to 1, and the pre-

walk-length to 6 in this setting. For node2vec, the x-axis represents the value of parameter q,

and the different colors represent the values of parameter q. The walk-length: 80 is fixed in

this setting. The columns further alternate over the different attributes.

To further visualize the effect of CrossWalk on the invariance of embedding regarding the

sensitive attribute, we visualized two embeddings for each graphwith colored sensitive groups

and reduced dimensionality with t-SNE; see figure 5.2 for sub-graph (a), figure 5.5 for sub-

graph (b), and figure 5.8 for sub-graph (c).

35

5 Results

Mean Median Min Max

CrossWalk node2vec CrossWalk node2vec CrossWalk node2vec CrossWalk node2vec

Sensitive attribute Sensitive attribute Sensitive attribute Sensitive attribute

F1weighted 0.6846 0.7302 0.6464 0.7305 0.5046 0.7181 0.8901 0.7406

F1macro 0.6343 0.6818 0.5766 0.6824 0.4301 0.6649 0.8795 0.6954

F1micro 0.7048 0.7387 0.6738 0.7392 0.5398 0.7269 0.8905 0.7490

Acc. 0.7048 0.7387 0.6738 0.7392 0.5398 0.7269 0.8905 0.7490

Var. 0.0026 0.0032 0.0013 0.0031 0.0000 0.0015 0.0111 0.0059

F1group0 0.7329 0.7896 0.7176 0.7899 0.5505 0.7750 0.9059 0.8022

F1group1 0.4070 0.4576 0.2605 0.4583 0.0799 0.4143 0.8310 0.4880

F1group2 0.7630 0.7980 0.7435 0.7980 0.6241 0.7867 0.9060 0.8094

Target attribute Target attribute Target attribute Target attribute

F1weighted 0.9792 0.9806 0.9795 0.9807 0.9691 0.9774 0.9858 0.9832

F1macro 0.9730 0.9748 0.9734 0.9751 0.9567 0.9692 0.9826 0.9789

F1micro 0.9792 0.9806 0.9795 0.9807 0.9687 0.9773 0.9858 0.9831

Acc. 0.9792 0.9806 0.9795 0.9807 0.9687 0.9773 0.9858 0.9831

Var. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0001

F1group0 0.9527 0.9560 0.9540 0.9562 0.9157 0.9421 0.9745 0.9658

F1group1 0.9851 0.9862 0.9854 0.9862 0.9747 0.9819 0.9914 0.9903

F1group2 0.9810 0.9822 0.9813 0.9822 0.9681 0.9770 0.9881 0.9871

Table 5.1: Results of a classification with a 50% training-set and five-fold cross-validation on the

distinct sub-graph (a).

Additionally, we compared the results of the CrossWalk and node2vec embeddings, directly

for selected hyperparameter, see figure 5.1, figure 5.4, and figure 5.7. Thereby we iterated

through parameter p ≡ q with exp= 4 and α ∈ {0.1, 0.4, 0.6, 0.9} for CrossWalk.

Before we examine the parameter sensitivity and the results for selected hyperparameter

combinations, we first discuss the results concerning the abovementioned tables and illustra-

tions in the following.

Results Overview for the Distinct Sub-Graph (a)

In table 5.1, we see that the results for the sensitive attribute and the embeddings generated

by CrossWalk show lower mean values, which indicates a higher invariance of the embedding

towards this attribute. In particular, the maximum andminimum values differ from node2vec.

This is especially noticeable for the minority class, group 2.

For the target attribute, however, these results are less different. Even if CrossWalk achieves

somewhat lower values, this indicates that while CrossWalk’s impact on the sensitive attribute

on the extreme values is significant, the embedding quality concerning the target attribute

does not change much.

Node2vec, on the other hand, shows only minor deviations between the minimum and max-

imum values for both attributes. Hence, for the distinct sub-graph (a) setting, it can be seen

36

5.1 Results Overview

Figure 5.1: Results compared for node2vec and CrossWalk with varying parameter settings on the distinct

sub-graph (a), each on the target attribute and the sensitive attribute for multiple param-

eters.

that CrossWalk achieves a higher invariance towards the sensitive attribute. In contrast, the

embedding quality for the target attribute is not significantly affected.

Further, for the target attribute, it is recognizable that the mean values are relatively high,

and the difference between the minimum and maximum values is slight. Therefore, the

structure of the distinct sub-graph (a) makes it easy to predict the target attribute.

Taking into account figure 5.3, we see the previous observations confirmed as there be-

ings only a relatively small difference between the mean values of the target attribute for

both embeddings compared to the differences in the sensitive attribute. We can see that the

parameter α significantly impacts the results, especially for the sensitive attribute of the mi-

nority class, group 2. For the sensitive attribute, it is observable that for small α values, the

prediction quality is even better with CrossWalk than with node2vec, but reaches the invariance

with growing α values. The most significant difference between both algorithms is seen in

group 2, the minority class. The results seem relatively stable over the parameter settings on

both attributes, for both algorithms on the target attribute and with node2vec.

In figure 5.1, we can see that for selected parameter settings, the results for CrossWalk and

node2vec on the target variable do not differ much. However, for the sensitive attribute, the

results for CrossWalk become better regarding invariance, meaning lower F1-scores, with

increasing α values.

37

5 Results

(a) CrossWalk sampling parameter:

p: 1, q: 1, alpha: 0.05, exp: 2.5

(b) CrossWalk sampling parameter:

p: 1, q: 1, alpha: 0.6, exp: 6

Figure 5.2: Node embedding colored according to the sensitive groups generated with CrossWalk for

the distinct sub-graph (a), with reduced dimensionality using t-SNE.

Results Overview for the Semi-distinct Sub-Graph (b)

Table 5.2 shows the results on the semi-distinct sub-graph (b). The results show similar ten-

dencies for the sensitive attribute and the embeddings generated by CrossWalk. However, a

bit weaker as on distinct sub-graph (a) in table 5.1. Here also, we see lower mean values and

different maximum and minimum values on the sensitive attribute for CrossWalk compared

to node2vec. This effect is comparable to setting (a) most noticeable for group 2, the minority

class. Regarding the target attribute, however, these results vary more than those for the

embedding of the distinct sub-graph (a).

Node2vec, on the other hand, similar to the distinct setting, only shows relatively small devia-

tions between the minimum and maximum values for both attributes. Looking at figure 5.1,

for the semi-distinct sub-graph (b) setting, it can be seen that CrossWalk achieves significant

invariance towards the sensitive attribute, especially for the minority group. In contrast,

the embedding quality for the target attribute is more affected than in the previous setting

(a). Like in the distinct setting, Crosswalk shows similar tendencies on the sensitive attribute.

The predictions are again more accurate for lower α values and more invariant towards the

sensitive attribute for higher α values. With this, Crosswalk reaches the group proportion on

the sensitive attribute, the absolute invariance reference, for the minority group analogous

to setting (a).

Altogether, the predictions on the semi-distinct setting are not as good as in the distinct setting.

The classification of embeddings from both algorithms achieves significant results, but the

prediction seems more affected by parameter settings. In figure 5.4, the direct comparison

of the difference between the two algorithms on the target attribute is more significant. In

38

5.1 Results Overview

(a) CrossWalk (b) node2vec

Figure 5.3: Group related results compared for node2vec and CrossWalk on the distinct sub-graph (a),

each on the target attribute and the sensitive attribute for multiple parameters for classi-

fication on a 50% training set.

39

5 Results

Mean Median Min Max

CrossWalk node2vec CrossWalk node2vec CrossWalk node2vec CrossWalk node2vec

Sensitive attribute Sensitive attribute Sensitive attribute Sensitive attribute

F1weighted 0.6979 0.7562 0.6609 0.7568 0.5465 0.7463 0.8787 0.7652

F1macro 0.6185 0.6922 0.5656 0.6937 0.4227 0.6782 0.8538 0.7039

F1micro 0.7197 0.7611 0.6885 0.7613 0.5906 0.7519 0.8796 0.7696

Acc. 0.7197 0.7611 0.6885 0.7613 0.5906 0.7519 0.8796 0.7696

Var. 0.0019 0.0004 0.0018 0.0003 0.0001 0.0002 0.0061 0.0006

F1group0 0.6396 0.7296 0.6116 0.7302 0.4247 0.7115 0.8614 0.7410

F1group1 0.4036 0.5025 0.2986 0.5057 0.0946 0.4759 0.7968 0.5261

F1group2 0.8123 0.8445 0.7919 0.8447 0.7237 0.8386 0.9160 0.8496

Target attribute Target attribute Target attribute Target attribute

F1weighted 0.7247 0.7633 0.7242 0.7636 0.6851 0.7556 0.7598 0.7689

F1macro 0.7503 0.7891 0.7510 0.7896 0.7045 0.7814 0.7840 0.7960

F1micro 0.7247 0.7633 0.7241 0.7637 0.6856 0.7556 0.7596 0.7688

Acc. 0.7247 0.7633 0.7241 0.7637 0.6856 0.7556 0.7596 0.7688

Var. 16.6528 15.9056 16.5221 15.8073 7.4199 12.5562 30.2604 21.2014

F1group0 0.6400 0.6886 0.6370 0.6893 0.5952 0.6759 0.6889 0.6991

F1group1 0.6299 0.6729 0.6293 0.6731 0.5873 0.6573 0.6727 0.6866

F1group2 0.8099 0.8558 0.8157 0.8569 0.7239 0.8400 0.8562 0.8689

F1group3 0.9214 0.9392 0.9232 0.9395 0.8876 0.9310 0.9400 0.9437

Table 5.2: Results of a classification on a 50% training-set and five-fold cross-validation on the semi-

distinct sub-graph (b).

Figure 5.4: Results compared for node2vec and CrossWalk with varying parameter settings on the semi-

distinct sub-graph (b), each on the target attribute and the sensitive attribute for multiple

parameters.

40

5.2 Parameter Sensitivity

(a) CrossWalk sampling parameter:

p: 1, q: 10, alpha: 0.01, exp: 1.5

(b) CrossWalk sampling parameter:

p: 1, q: 1, alpha: 0.5, exp: 6

Figure 5.5: Node embedding according to the sensitive groups generated with CrossWalk for the semi-

distinct sub-graph (b), with reduced dimensionality using t-SNE.

contrast, the difference on the sensitive attribute is less between both than on the distinct set,

given the same parameter settings.

Results Overview for the Mixed Sub-Graph (c)

Table 5.3 shows the results on Mixed sub-graph (c). The results have similar tendencies for

both attributes and the embeddings generated by the varying parameters on both algorithms.

The Mixed setting, the adjacent neighborhoods of a big city, see section 4.1 seem to make it

harder to predict the regions as the target attribute. Altogether the results are not as clear as

in the previous settings (a) and (b) but clearly show similar tendencies.

5.2 Parameter Sensitivity

In the following, we provide a sensitivity analysis for the parameters of the two algorithms.

For this, we illustrate the sensitivity of the parameters walk-length and q for node2vec and

the parameters pre-walk length and α for CrossWalk. We plotted each setting for the three

sub-graph settings as follows: The y-axis of the plots shows the F1-score for the classification

of both attributes, colored orange for the sensitive attribute and blue for the target attribute.

The x-axis represents the respective parameter values as categories, and the columns repre-

sent the relative training set size.

Figure 5.10 shows the sensitivity of the walk-length parameter and figure 5.11 shows the

sensitivity of the parameter q for node2vec. Both figures represent boxplots varying over all

other parameter settings for node2vec.

41

5 Results

(a) CrossWalk (b) node2vec

Figure 5.6: Group related results compared for node2vec and CrossWalk on the semi-distinct sub-graph

(b), each on the target attribute and the sensitive attribute for multiple parameters.

42

5.2 Parameter Sensitivity

Mean Median Min Max

CrossWalk node2vec CrossWalk node2vec CrossWalk node2vec CrossWalk node2vec

F1weighted 0.7588 0.7904 0.7461 0.7906 0.6792 0.7819 0.8759 0.7945

F1macro 0.5956 0.6533 0.5736 0.6532 0.4532 0.6433 0.8028 0.6611

F1micro 0.7845 0.8033 0.7696 0.8034 0.7267 0.7907 0.8813 0.8076

Acc. 0.7845 0.8033 0.7696 0.8034 0.7267 0.7907 0.8813 0.8076

Var. 0.0011 0.0004 0.0010 0.0004 0.0001 0.0002 0.0027 0.0008

F1group0 0.5847 0.6844 0.5738 0.6842 0.3839 0.6672 0.8080 0.6965

F1group1 0.3230 0.3833 0.2685 0.3833 0.1189 0.3693 0.6706 0.4091

F1group2 0.8790 0.8921 0.8724 0.8924 0.8441 0.8843 0.9299 0.8954

Target attribute Target attribute Target attribute Target attribute

F1weighted 0.4032 0.4529 0.3996 0.4530 0.3670 0.4453 0.4479 0.4610

F1macro 0.3482 0.4055 0.3443 0.4057 0.3006 0.3967 0.4010 0.4129

F1micro 0.4094 0.4586 0.4058 0.4586 0.3749 0.4509 0.4523 0.4673

Acc. 0.4094 0.4586 0.4058 0.4586 0.3749 0.4509 0.4523 0.4673

Var. 0.0038 0.0053 0.0037 0.0053 0.0007 0.0043 0.0075 0.0065

F1group0 0.5005 0.5469 0.4968 0.5472 0.4708 0.5380 0.5420 0.5596

F1group1 0.3589 0.3972 0.3574 0.3973 0.3182 0.3815 0.3994 0.4089

F1group2 0.3511 0.4504 0.3438 0.4510 0.2721 0.4330 0.4462 0.4642

F1group3 0.3484 0.3905 0.3470 0.3902 0.2988 0.3809 0.3922 0.4010

F1group4 0.1821 0.2423 0.1790 0.2415 0.0943 0.2137 0.2622 0.2744

Table 5.3: Results of a classification on a 50% training-set and five-fold cross-validation on theMixed

sub-graph (c).

Figure 5.7: Results compared for node2vec and CrossWalk with varying parameter settings on theMixed

sub-graph (c), each on the target attribute and the sensitive attribute for multiple param-

eters.

43

5 Results

(a) CrossWalk sampling parameter:

p: 2.5, q: 2.5

(b) CrossWalk sampling parameter:

p: 1, q: 1, alpha: 0.75, exp: 6

Figure 5.8: Node embedding according to the sensitive groups generated with CrossWalk for theMixed

sub-graph (c), with reduced dimensionality using t-SNE.

Figure 5.12 shows the sensitivity of the pre-walk length parameter as a scatterplot, with

colored attributes, various sizes for exp, and various signs for α for CrossWalk. Figure 5.13

shows the sensitivity of the parameter α for CrossWalk as boxplot.

The most considerable Effect on the classification results is caused by the training set size

and the graph structure. The walklenght for node2vec seems not to have a significant effect for

a longer walk than 80, which fit the observation the authors made in [GL16]. The parameter

q for node2vec, as well the other node2vec parameters, seem to have only a slight effect on the

results in the evaluated settings. The same is observable for the Effect of the pre-walk length

to calculate the cfn parameter for CrossWalk.

Hence, the results for the parameter α for CrossWalk show an apparent effect on the results.

In each classification setting and on each graph structure, CrossWalk embeddings outperform

node2vec in both directions, with the higher prediction quality and the higher invariance, both

regarding the sensitive attribute, with alpha as the significant parameter. Concerning the tar-

get attribute, there is a trade-off between accuracy and invariance, which is also observable

in the results of [KKB+22].

44

5.2 Parameter Sensitivity

(a) CrossWalk (b) node2vec

Figure 5.9: Group related results compared for node2vec and CrossWalk on the Mixed sub-graph (c),

each on the target attribute and the sensitive attribute for multiple parameters.

45

5 Results

(a) Effect of walk length on node2veck samplings for the distibc sub-graph (a).

(b) Effect of walk length on node2veck samplings for the semi-distibc sub-graph (b).

(c) Effect of walk length on node2veck samplings for the mixed sub-graph (c).

Figure 5.10: Effect of wavelength on node2veck samplings compared for the target and sensitive at-

tributes.

46

5.2 Parameter Sensitivity

(a) Effect of parameter q on node2veck samplings for the distinct sub-graph (a)

(b) Effect of parameter q on node2veck samplings for the semi-distibc sub-graph (b).

(c) Effect of parameter q on node2veck samplings for the mixed sub-graph (c).

Figure 5.11: Effect of parameter q on node2veck samplings compared for the target and sensitive at-

tributes.

47

5 Results

(a) Effect of pre-walk length on CrossWalk samplings for the distinct sub-graph (a)

(b) Effect of pre-walk length on CrossWalk samplings for the semi-distibc sub-graph (b).

(c) Effect of pre-walk length on CrossWalk samplings for the mixed sub-graph (c).

Figure 5.12: effect of pre-walk length on CrossWalk samplings compared for the target attribute and

the sensitive attribute.

48

5.2 Parameter Sensitivity

(a) Effect of parameter α on CrossWalk samplings for the distinct sub-graph (a)

(b) Effect of parameter α on CrossWalk samplings for the semi-distibc sub-graph (b).

(c) Effect of parameter α on CrossWalk samplings for the mixed sub-graph (c).

Figure 5.13: Effect of parameter α on CrossWalk samplings compared for the target attribute and the

sensitive attribute.

49

6 Conclusion
This work examines how graph-sampling-based methods generate reasonable representa-

tions of real-world social networks. For this, we first outlined the theoretical foundations of

the underlying areas to introduce the randomwalk-based graph samplingmethods regarding

the related work. After that, we reviewed our experimental setup.

Nevertheless, the results of our experiments suggest that the choice of the sampling method

and parameter selection is crucial for the quality of the resulting graph embedding. Biased

random walks significantly affect the outcome of node embeddings concerning node classi-

fication as a downstream task. Therefore, the biasing of such random walks is a good choice

for sampling methods to control certain aspects of the graph representations regarding hid-

ing or revealing graph structure-based information, such as targeted attributes and sensitive

attributes.

The downstream task of classification of the underlying graph structure, as well as the train-

ing set size, affects the outcome of predictions significantly and, therefore, represents a sub-

stantial factor besides the sampling method and the parameter selection. The tendencies

of the hyperparameter effects on the embedding quality have shown to be consistent in all

examined cases, and the effects of the CrossWalk sampling on specified parameters are sig-

nificant. There is a clear trade-off between the accuracy and the fairness of the resulting

embeddings. Still, the difference in the prediction quality regarding the target attribute be-

tween CrossWalk and node2vec is relatively minor compared to the difference in the invariance

tendencies of the embeddings.

Hence, taking into account that the prediction of the sensitive attribute for smaller alpha

values becomes significantly more accurate with CrossWalk generated graph representations

compared to the node2vec, we can conclude that the CrossWalk random walk biasing is a good

approach to achieve not only invariant embeddings but also better prediction accuracy. This

holds particularly for minority classes, depending on the parameter settings. Our evaluation

showed that the effect of random walk biasing on graph embeddings is significant in sev-

eral real-world-based social network structures and controllable through hyperparameter

settings.

Further research on the topic of node embeddings and fairness is needed to find best-case

approximations for the trade-off between fairness and accuracy and to figure out further

if the CrossWalk random walk biasing may be suitable to achieve invariant embeddings of

51

6 Conclusion

social networks and to maximize prediction accuracy, even on graphs from other domains.

Additionally, it would be interesting to see how the CrossWalk random walk interacts with

certain specific graph structures and how the interaction with parameter settings influences

the outcome.

Regarding further development, it seems worth looking into the extension of CrossWalk to

graphs with mostly unlabeled nodes by predicting the unknown related groups for the up

following group-based randomwalk biasing. This is particularly important against exploiting

social network user attributes that were never given by the user but are hidden in the graph

structure. Finally, considering the results of the CrossWalk random walk biasing in favor of

fairness, we can conclude that the effect of random walk biasing on embedding is significant

and controllable through hyperparameter settings.

52

7 Appendix

Mean Median Min Max

Sensitive attribute Sensitive attribute Sensitive attribute Sensitive attribute

CrossWalk node2vec CrossWalk node2vec CrossWalk node2vec CrossWalk node2vec

F1weighted 0.6039 0.6499 0.5383 0.6501 0.4550 0.6175 0.8610 0.6674

F1macro 0.5406 0.5838 0.4571 0.5838 0.3793 0.5525 0.8463 0.6097

F1micro 0.6355 0.6706 0.5786 0.6707 0.4933 0.6354 0.8627 0.6931

Acc. 0.6355 0.6706 0.5786 0.6707 0.4933 0.6354 0.8627 0.6931

Var. 0.0044 0.0041 0.0017 0.0038 0.0001 0.0009 0.0258 0.0115

Precisionweighted 0.6143 0.6493 0.5495 0.6490 0.4517 0.6187 0.8625 0.6701

Precisionmicro 0.6355 0.6706 0.5786 0.6707 0.4933 0.6354 0.8627 0.6931

Precisionmacro 0.5860 0.6038 0.5191 0.6034 0.4064 0.5683 0.8586 0.6355

Recallweighted 0.6355 0.6706 0.5786 0.6707 0.4933 0.6354 0.8627 0.6931

Recallmicro 0.6355 0.6706 0.5786 0.6707 0.4933 0.6354 0.8627 0.6931

Recallmacro 0.5583 0.5934 0.4840 0.5931 0.4114 0.5635 0.8486 0.6167

F1group0 0.6570 0.7316 0.6041 0.7321 0.4662 0.6856 0.8833 0.7504

F1group1 0.2578 0.2775 0.1031 0.2781 0.0274 0.2235 0.7885 0.3456

F1group2 0.7070 0.7423 0.6694 0.7426 0.5646 0.7155 0.8824 0.7660

Rel. Supportgroup0 0.3478 0.3478 0.3478 0.3478 0.3478 0.3478 0.3478 0.3478

Rel. Supportgroup1 0.1908 0.1908 0.1908 0.1908 0.1908 0.1908 0.1908 0.1908

Rel. Supportgroup2 0.4615 0.4615 0.4615 0.4615 0.4615 0.4615 0.4615 0.4615

Mean Median Min Max

Target attribute Target attribute Target attribute Target attribute

CrossWalk node2vec CrossWalk node2vec CrossWalk node2vec CrossWalk node2vec

F1weighted 0.9647 0.9683 0.9665 0.9688 0.9175 0.9596 0.9777 0.9752

F1macro 0.9517 0.9562 0.9539 0.9563 0.8811 0.9445 0.9702 0.9652

F1micro 0.9642 0.9680 0.9663 0.9685 0.9136 0.9592 0.9775 0.9749

Acc. 0.9642 0.9680 0.9663 0.9685 0.9136 0.9592 0.9775 0.9749

Var. 0.0003 0.0001 0.0002 0.0001 0.0000 0.0000 0.0052 0.0004

Precisionweighted 0.9665 0.9694 0.9681 0.9698 0.9279 0.9614 0.9784 0.9762

Precisionmicro 0.9642 0.9680 0.9663 0.9685 0.9136 0.9592 0.9775 0.9749

Precisionmacro 0.9473 0.9518 0.9494 0.9515 0.8663 0.9343 0.9766 0.9670

Recallweighted 0.9642 0.9680 0.9663 0.9685 0.9136 0.9592 0.9775 0.9749

Recallmicro 0.9642 0.9680 0.9663 0.9685 0.9136 0.9592 0.9775 0.9749

Recallmacro 0.9586 0.9620 0.9599 0.9619 0.9084 0.9539 0.9767 0.9716

F1group0 0.9098 0.9168 0.9142 0.9177 0.7622 0.8920 0.9521 0.9351

F1group1 0.9767 0.9792 0.9780 0.9798 0.9463 0.9693 0.9865 0.9836

F1group2 0.9686 0.9725 0.9703 0.9729 0.9077 0.9620 0.9842 0.9807

Rel. Supportgroup0 0.1316 0.1316 0.1316 0.1316 0.1316 0.1316 0.1316 0.1316

Rel. Supportgroup1 0.4731 0.4731 0.4731 0.4731 0.4731 0.4731 0.4731 0.4731

Rel. Supportgroup2 0.3953 0.3953 0.3953 0.3953 0.3953 0.3953 0.3953 0.3953

Table 7.1: Results of a classification with a 10% training-set and five-fold cross-validation on the

Distinct sub-graph (a)

53

7 Appendix

Mean Median Min Max

Sensitive attribute Sensitive attribute Sensitive attribute Sensitive attribute

CrossWalk node2vec CrossWalk node2vec CrossWalk node2vec CrossWalk node2vec

F1weighted 0.6521 0.6998 0.5954 0.7000 0.4911 0.6877 0.8734 0.7118

F1macro 0.5957 0.6448 0.5215 0.6441 0.4178 0.6293 0.8608 0.6604

F1micro 0.6771 0.7119 0.6350 0.7121 0.5257 0.7014 0.8740 0.7221

Acc. 0.6771 0.7119 0.6350 0.7121 0.5257 0.7014 0.8740 0.7221

Var. 0.0029 0.0030 0.0014 0.0028 0.0001 0.0015 0.0156 0.0051

Precisionweighted 0.6560 0.6981 0.6107 0.6981 0.4894 0.6859 0.8739 0.7108

Precisionmicro 0.6771 0.7119 0.6350 0.7121 0.5257 0.7014 0.8740 0.7221

Precisionmacro 0.6290 0.6589 0.5749 0.6592 0.4444 0.6457 0.8635 0.6736

Recallweighted 0.6771 0.7119 0.6350 0.7121 0.5257 0.7014 0.8740 0.7221

Recallmicro 0.6771 0.7119 0.6350 0.7121 0.5257 0.7014 0.8740 0.7221

Recallmacro 0.6064 0.6461 0.5373 0.6458 0.4402 0.6320 0.8607 0.6608

F1group0 0.7034 0.7667 0.6725 0.7672 0.5266 0.7529 0.8932 0.7807

F1group1 0.3422 0.3905 0.1842 0.3898 0.0623 0.3516 0.8044 0.4234

F1group2 0.7415 0.7772 0.7140 0.7764 0.6071 0.7631 0.8910 0.7900

Rel. Supportgroup0 0.3480 0.3480 0.3480 0.3480 0.3480 0.3480 0.3480 0.3480

Rel. Supportgroup1 0.1907 0.1907 0.1907 0.1907 0.1907 0.1907 0.1907 0.1907

Rel. Supportgroup2 0.4613 0.4613 0.4613 0.4613 0.4613 0.4613 0.4613 0.4613

Mean Median Min Max

Target attribute Target attribute Target attribute Target attribute

CrossWalk node2vec CrossWalk node2vec CrossWalk node2vec CrossWalk node2vec

F1weighted 0.9741 0.9766 0.9747 0.9768 0.9587 0.9703 0.9815 0.9806

F1macro 0.9660 0.9690 0.9670 0.9691 0.9419 0.9601 0.9768 0.9749

F1micro 0.9740 0.9766 0.9747 0.9768 0.9581 0.9701 0.9814 0.9806

Acc. 0.9740 0.9766 0.9747 0.9768 0.9581 0.9701 0.9814 0.9806

Var. 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000 0.0011 0.0002

Precisionweighted 0.9747 0.9770 0.9752 0.9773 0.9604 0.9710 0.9816 0.9809

Precisionmicro 0.9740 0.9766 0.9747 0.9768 0.9581 0.9701 0.9814 0.9806

Precisionmacro 0.9675 0.9717 0.9686 0.9723 0.9320 0.9591 0.9851 0.9820

Recallweighted 0.9740 0.9766 0.9747 0.9768 0.9581 0.9701 0.9814 0.9806

Recallmicro 0.9740 0.9766 0.9747 0.9768 0.9581 0.9701 0.9814 0.9806

Recallmacro 0.9654 0.9672 0.9656 0.9672 0.9468 0.9592 0.9792 0.9751

F1group0 0.9399 0.9448 0.9418 0.9453 0.8845 0.9284 0.9658 0.9579

F1group1 0.9815 0.9836 0.9819 0.9834 0.9647 0.9780 0.9892 0.9887

F1group2 0.9767 0.9788 0.9772 0.9792 0.9560 0.9695 0.9853 0.9856

Rel. Supportgroup0 0.1318 0.1318 0.1318 0.1318 0.1318 0.1318 0.1318 0.1318

Rel. Supportgroup1 0.4732 0.4732 0.4732 0.4732 0.4732 0.4732 0.4732 0.4732

Rel. Supportgroup2 0.3950 0.3950 0.3950 0.3950 0.3950 0.3950 0.3950 0.3950

Table 7.2: Results of a classification with a 25% training-set and five-fold cross-validation on the

Distinct sub-graph (a)

54

Mean Median Min Max

Sensitive attribute Sensitive attribute Sensitive attribute Sensitive attribute

CrossWalk node2vec CrossWalk node2vec CrossWalk node2vec CrossWalk node2vec

F1weighted 0.6846 0.7302 0.6464 0.7305 0.5046 0.7181 0.8901 0.7406

F1macro 0.6343 0.6818 0.5766 0.6824 0.4301 0.6649 0.8795 0.6954

F1micro 0.7048 0.7387 0.6738 0.7392 0.5398 0.7269 0.8905 0.7490

Acc. 0.7048 0.7387 0.6738 0.7392 0.5398 0.7269 0.8905 0.7490

Var. 0.0026 0.0032 0.0013 0.0031 0.0000 0.0015 0.0111 0.0059

Precisionweighted 0.6850 0.7291 0.6536 0.7297 0.4989 0.7157 0.8918 0.7401

Precisionmicro 0.7048 0.7387 0.6738 0.7392 0.5398 0.7269 0.8905 0.7490

Precisionmacro 0.6580 0.6938 0.6217 0.6941 0.4454 0.6791 0.8834 0.7079

Recallweighted 0.7048 0.7387 0.6738 0.7392 0.5398 0.7269 0.8905 0.7490

Recallmicro 0.7048 0.7387 0.6738 0.7392 0.5398 0.7269 0.8905 0.7490

Recallmacro 0.6420 0.6807 0.5863 0.6811 0.4532 0.6659 0.8797 0.6946

F1group0 0.7329 0.7896 0.7176 0.7899 0.5505 0.7750 0.9059 0.8022

F1group1 0.4070 0.4576 0.2605 0.4583 0.0799 0.4143 0.8310 0.4880

F1group2 0.7630 0.7980 0.7435 0.7980 0.6241 0.7867 0.9060 0.8094

Rel. Supportgroup0 0.3479 0.3479 0.3479 0.3479 0.3479 0.3479 0.3479 0.3479

Rel. Supportgroup1 0.1907 0.1907 0.1907 0.1907 0.1907 0.1907 0.1907 0.1907

Rel. Supportgroup2 0.4613 0.4613 0.4613 0.4613 0.4613 0.4613 0.4613 0.4613

Mean Median Min Max

Target attribute Target attribute Target attribute Target attribute

CrossWalk node2vec CrossWalk node2vec CrossWalk node2vec CrossWalk node2vec

F1weighted 0.9792 0.9806 0.9795 0.9807 0.9691 0.9774 0.9858 0.9832

F1macro 0.9730 0.9748 0.9734 0.9751 0.9567 0.9692 0.9826 0.9789

F1micro 0.9792 0.9806 0.9795 0.9807 0.9687 0.9773 0.9858 0.9831

Acc. 0.9792 0.9806 0.9795 0.9807 0.9687 0.9773 0.9858 0.9831

Var. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0001

Precisionweighted 0.9795 0.9809 0.9797 0.9810 0.9700 0.9776 0.9860 0.9835

Precisionmicro 0.9792 0.9806 0.9795 0.9807 0.9687 0.9773 0.9858 0.9831

Precisionmacro 0.9752 0.9778 0.9761 0.9780 0.9470 0.9666 0.9881 0.9852

Recallweighted 0.9792 0.9806 0.9795 0.9807 0.9687 0.9773 0.9858 0.9831

Recallmicro 0.9792 0.9806 0.9795 0.9807 0.9687 0.9773 0.9858 0.9831

Recallmacro 0.9713 0.9723 0.9714 0.9717 0.9555 0.9661 0.9822 0.9798

F1group0 0.9527 0.9560 0.9540 0.9562 0.9157 0.9421 0.9745 0.9658

F1group1 0.9851 0.9862 0.9854 0.9862 0.9747 0.9819 0.9914 0.9903

F1group2 0.9810 0.9822 0.9813 0.9822 0.9681 0.9770 0.9881 0.9871

Rel. Supportgroup0 0.1318 0.1318 0.1318 0.1318 0.1318 0.1318 0.1318 0.1318

Rel. Supportgroup1 0.4731 0.4731 0.4731 0.4731 0.4731 0.4731 0.4731 0.4731

Rel. Supportgroup2 0.3951 0.3951 0.3951 0.3951 0.3951 0.3951 0.3951 0.3951

Table 7.3: Results of a classification with a 50% training-set and five-fold cross-validation on the

Distinct sub-graph (a)

55

7 Appendix

Mean Median Min Max

Sensitive attribute Sensitive attribute Sensitive attribute Sensitive attribute

CrossWalk node2vec CrossWalk node2vec CrossWalk node2vec CrossWalk node2vec

F1weighted 0.6999 0.7440 0.6735 0.7436 0.5029 0.7303 0.9034 0.7609

F1macro 0.6530 0.6991 0.6127 0.6997 0.4310 0.6792 0.8938 0.7201

F1micro 0.7173 0.7507 0.6961 0.7498 0.5280 0.7389 0.9034 0.7665

Acc. 0.7173 0.7507 0.6961 0.7498 0.5280 0.7389 0.9034 0.7665

Var. 0.0029 0.0041 0.0019 0.0040 0.0001 0.0017 0.0122 0.0080

Precisionweighted 0.6986 0.7440 0.6832 0.7437 0.4879 0.7295 0.9046 0.7612

Precisionmicro 0.7173 0.7507 0.6961 0.7498 0.5280 0.7389 0.9034 0.7665

Precisionmacro 0.6704 0.7093 0.6553 0.7084 0.4292 0.6930 0.9038 0.7285

Recallweighted 0.7173 0.7507 0.6961 0.7498 0.5280 0.7389 0.9034 0.7665

Recallmicro 0.7173 0.7507 0.6961 0.7498 0.5280 0.7389 0.9034 0.7665

Recallmacro 0.6602 0.6980 0.6163 0.6988 0.4473 0.6792 0.8971 0.7180

F1group0 0.7460 0.7988 0.7400 0.7984 0.5415 0.7798 0.9193 0.8215

F1group1 0.4406 0.4910 0.3287 0.4896 0.0656 0.4399 0.8577 0.5352

F1group2 0.7724 0.8073 0.7596 0.8065 0.6165 0.7955 0.9189 0.8213

Rel. Supportgroup0 0.3478 0.3478 0.3478 0.3478 0.3478 0.3478 0.3478 0.3478

Rel. Supportgroup1 0.1909 0.1909 0.1909 0.1909 0.1909 0.1909 0.1909 0.1909

Rel. Supportgroup2 0.4613 0.4613 0.4613 0.4613 0.4613 0.4613 0.4613 0.4613

Mean Median Min Max

Target attribute Target attribute Target attribute Target attribute

CrossWalk node2vec CrossWalk node2vec CrossWalk node2vec CrossWalk node2vec

F1weighted 0.9812 0.9815 0.9814 0.9815 0.9710 0.9765 0.9886 0.9858

F1macro 0.9755 0.9759 0.9758 0.9757 0.9585 0.9677 0.9858 0.9829

F1micro 0.9812 0.9815 0.9815 0.9815 0.9706 0.9764 0.9886 0.9858

Acc. 0.9812 0.9815 0.9815 0.9815 0.9706 0.9764 0.9886 0.9858

Var. 0.0001 0.0001 0.0001 0.0001 0.0000 0.0000 0.0002 0.0002

Precisionweighted 0.9815 0.9817 0.9816 0.9817 0.9718 0.9768 0.9887 0.9859

Precisionmicro 0.9812 0.9815 0.9815 0.9815 0.9706 0.9764 0.9886 0.9858

Precisionmacro 0.9773 0.9780 0.9781 0.9782 0.9495 0.9651 0.9906 0.9878

Recallweighted 0.9812 0.9815 0.9815 0.9815 0.9706 0.9764 0.9886 0.9858

Recallmicro 0.9812 0.9815 0.9815 0.9815 0.9706 0.9764 0.9886 0.9858

Recallmacro 0.9741 0.9743 0.9744 0.9744 0.9575 0.9667 0.9864 0.9818

F1group0 0.9571 0.9581 0.9579 0.9575 0.9170 0.9393 0.9804 0.9735

F1group1 0.9867 0.9869 0.9869 0.9872 0.9768 0.9820 0.9941 0.9933

F1group2 0.9827 0.9828 0.9829 0.9829 0.9709 0.9748 0.9910 0.9885

Rel. Supportgroup0 0.1318 0.1318 0.1318 0.1318 0.1318 0.1318 0.1318 0.1318

Rel. Supportgroup1 0.4728 0.4728 0.4728 0.4728 0.4728 0.4728 0.4728 0.4728

Rel. Supportgroup2 0.3954 0.3954 0.3954 0.3954 0.3954 0.3954 0.3954 0.3954

Table 7.4: Results of a classification with a 75% training-set and five-fold cross-validation on the

Distinct sub-graph (a)

56

Mean Median Min Max

Sensitive attribute Sensitive attribute Sensitive attribute Sensitive attribute

CrossWalk node2vec CrossWalk node2vec CrossWalk node2vec CrossWalk node2vec

F1weighted 0.6105 0.6854 0.5519 0.6857 0.4881 0.6669 0.8492 0.6990

F1macro 0.5092 0.6124 0.4271 0.6142 0.3639 0.5836 0.8204 0.6306

F1micro 0.6495 0.6902 0.6053 0.6903 0.5134 0.6737 0.8502 0.7045

Acc. 0.6495 0.6902 0.6053 0.6903 0.5134 0.6737 0.8502 0.7045

Var. 0.0023 0.0013 0.0018 0.0011 0.0001 0.0003 0.0116 0.0041

Precisionweighted 0.6131 0.6856 0.5569 0.6869 0.4800 0.6657 0.8495 0.6989

Precisionmicro 0.6495 0.6902 0.6053 0.6903 0.5134 0.6737 0.8502 0.7045

Precisionmacro 0.5618 0.6191 0.4979 0.6196 0.3979 0.5961 0.8286 0.6361

Recallweighted 0.6495 0.6902 0.6053 0.6903 0.5134 0.6737 0.8502 0.7045

Recallmicro 0.6495 0.6902 0.6053 0.6903 0.5134 0.6737 0.8502 0.7045

Recallmacro 0.5141 0.6137 0.4366 0.6156 0.3844 0.5874 0.8219 0.6350

F1group0 0.5129 0.6493 0.4372 0.6500 0.3196 0.6224 0.8127 0.6686

F1group1 0.2535 0.4008 0.1148 0.4041 0.0408 0.3269 0.7629 0.4429

F1group2 0.7611 0.7871 0.7379 0.7869 0.6498 0.7665 0.8940 0.7990

Rel. Supportgroup0 0.2521 0.2521 0.2521 0.2521 0.2521 0.2521 0.2521 0.2521

Rel. Supportgroup1 0.1735 0.1735 0.1735 0.1735 0.1735 0.1735 0.1735 0.1735

Rel. Supportgroup2 0.5745 0.5745 0.5745 0.5745 0.5745 0.5745 0.5745 0.5745

Mean Median Min Max

Target attribute Target attribute Target attribute Target attribute

CrossWalk node2vec CrossWalk node2vec CrossWalk node2vec CrossWalk node2vec

F1weighted 0.6753 0.7240 0.6748 0.7247 0.6177 0.7114 0.7192 0.7356

F1macro 0.7032 0.7538 0.7046 0.7552 0.6210 0.7418 0.7504 0.7640

F1micro 0.6765 0.7246 0.6763 0.7251 0.6214 0.7136 0.7194 0.7357

Acc. 0.6765 0.7246 0.6763 0.7251 0.6214 0.7136 0.7194 0.7357

Var. 0.0014 0.0013 0.0012 0.0013 0.0002 0.0009 0.0077 0.0019

Precisionweighted 0.6780 0.7256 0.6776 0.7262 0.6245 0.7121 0.7206 0.7367

Precisionmicro 0.6765 0.7246 0.6763 0.7251 0.6214 0.7136 0.7194 0.7357

Precisionmacro 0.7091 0.7541 0.7106 0.7560 0.6267 0.7395 0.7491 0.7644

Recallweighted 0.6765 0.7246 0.6763 0.7251 0.6214 0.7136 0.7194 0.7357

Recallmicro 0.6765 0.7246 0.6763 0.7251 0.6214 0.7136 0.7194 0.7357

Recallmacro 0.7024 0.7554 0.7039 0.7560 0.6122 0.7436 0.7529 0.7645

F1group0 0.5811 0.6433 0.5786 0.6432 0.5163 0.6227 0.6393 0.6604

F1group1 0.5648 0.6147 0.5644 0.6137 0.5012 0.5874 0.6244 0.6416

F1group2 0.7649 0.8309 0.7751 0.8329 0.5452 0.8039 0.8429 0.8457

F1group3 0.9021 0.9263 0.9055 0.9283 0.8231 0.9005 0.9302 0.9339

Rel. Supportgroup0 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300

Rel. Supportgroup1 0.3217 0.3217 0.3217 0.3217 0.3217 0.3217 0.3217 0.3217

Rel. Supportgroup2 0.0906 0.0906 0.0906 0.0906 0.0906 0.0906 0.0906 0.0906

Rel. Supportgroup3 0.2577 0.2577 0.2577 0.2577 0.2577 0.2577 0.2577 0.2577

Table 7.5: Results of a classification with a 10% training-set and five-fold cross-validation on the Semi-

distinct sub-graph (b)

Mean Median Min Max

Sensitive attribute Sensitive attribute Sensitive attribute Sensitive attribute

CrossWalk node2vec CrossWalk node2vec CrossWalk node2vec CrossWalk node2vec

F1weighted 0.6641 0.7271 0.6165 0.7284 0.5273 0.7157 0.8630 0.7375

F1macro 0.5754 0.6584 0.5098 0.6605 0.4003 0.6422 0.8359 0.6706

F1micro 0.6927 0.7320 0.6483 0.7328 0.5679 0.7218 0.8637 0.7427

Acc. 0.6927 0.7320 0.6483 0.7328 0.5679 0.7218 0.8637 0.7427

Var. 0.0018 0.0006 0.0015 0.0006 0.0001 0.0003 0.0059 0.0010

Precisionweighted 0.6636 0.7250 0.6152 0.7266 0.5160 0.7124 0.8626 0.7350

Precisionmicro 0.6927 0.7320 0.6483 0.7328 0.5679 0.7218 0.8637 0.7427

Precisionmacro 0.6177 0.6657 0.5685 0.6663 0.4352 0.6512 0.8450 0.6787

Recallweighted 0.6927 0.7320 0.6483 0.7328 0.5679 0.7218 0.8637 0.7427

Recallmicro 0.6927 0.7320 0.6483 0.7328 0.5679 0.7218 0.8637 0.7427

Recallmacro 0.5730 0.6558 0.5078 0.6586 0.4136 0.6379 0.8304 0.6680

F1group0 0.5928 0.6970 0.5472 0.6988 0.3884 0.6806 0.8301 0.7153

F1group1 0.3405 0.4560 0.2140 0.4582 0.0728 0.4114 0.7772 0.4791

F1group2 0.7930 0.8221 0.7673 0.8221 0.7046 0.8135 0.9045 0.8294

Rel. Supportgroup0 0.2522 0.2522 0.2522 0.2522 0.2522 0.2522 0.2522 0.2522

Rel. Supportgroup1 0.1734 0.1734 0.1734 0.1734 0.1734 0.1734 0.1734 0.1734

Rel. Supportgroup2 0.5744 0.5744 0.5744 0.5744 0.5744 0.5744 0.5744 0.5744

Mean Median Min Max

Target attribute Target attribute Target attribute Target attribute

CrossWalk node2vec CrossWalk node2vec CrossWalk node2vec CrossWalk node2vec

F1weighted 0.7041 0.7463 0.7040 0.7468 0.6581 0.7376 0.7426 0.7531

F1macro 0.7315 0.7737 0.7326 0.7746 0.6754 0.7640 0.7687 0.7809

F1micro 0.7043 0.7464 0.7044 0.7469 0.6587 0.7383 0.7422 0.7532

Acc. 0.7043 0.7464 0.7044 0.7469 0.6587 0.7383 0.7422 0.7532

Var. 0.0015 0.0015 0.0015 0.0015 0.0004 0.0010 0.0040 0.0019

Precisionweighted 0.7050 0.7468 0.7050 0.7474 0.6588 0.7380 0.7432 0.7538

Precisionmicro 0.7043 0.7464 0.7044 0.7469 0.6587 0.7383 0.7422 0.7532

Precisionmacro 0.7340 0.7731 0.7359 0.7741 0.6833 0.7608 0.7686 0.7801

Recallweighted 0.7043 0.7464 0.7044 0.7469 0.6587 0.7383 0.7422 0.7532

Recallmicro 0.7043 0.7464 0.7044 0.7469 0.6587 0.7383 0.7422 0.7532

Recallmacro 0.7303 0.7749 0.7312 0.7753 0.6669 0.7681 0.7710 0.7826

F1group0 0.6139 0.6676 0.6115 0.6677 0.5649 0.6528 0.6665 0.6782

F1group1 0.6024 0.6491 0.6016 0.6490 0.5472 0.6303 0.6520 0.6616

F1group2 0.7953 0.8442 0.8017 0.8462 0.6712 0.8214 0.8455 0.8575

F1group3 0.9145 0.9338 0.9169 0.9346 0.8693 0.9169 0.9345 0.9401

Rel. Supportgroup0 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300

Rel. Supportgroup1 0.3216 0.3216 0.3216 0.3216 0.3216 0.3216 0.3216 0.3216

Rel. Supportgroup2 0.0906 0.0906 0.0906 0.0906 0.0906 0.0906 0.0906 0.0906

Rel. Supportgroup3 0.2577 0.2577 0.2577 0.2577 0.2577 0.2577 0.2577 0.2577

Table 7.6: Results of a classification with a 25% training-set and five-fold cross-validation on the Semi-

distinct sub-graph (b)

57

7 Appendix

Mean Median Min Max

Sensitive attribute Sensitive attribute Sensitive attribute Sensitive attribute

CrossWalk node2vec CrossWalk node2vec CrossWalk node2vec CrossWalk node2vec

F1weighted 0.6979 0.7562 0.6609 0.7568 0.5465 0.7463 0.8787 0.7652

F1macro 0.6185 0.6922 0.5656 0.6937 0.4227 0.6782 0.8538 0.7039

F1micro 0.7197 0.7611 0.6885 0.7613 0.5906 0.7519 0.8796 0.7696

Acc. 0.7197 0.7611 0.6885 0.7613 0.5906 0.7519 0.8796 0.7696

Var. 0.0019 0.0004 0.0018 0.0003 0.0001 0.0002 0.0061 0.0006

Precisionweighted 0.6954 0.7540 0.6658 0.7548 0.5340 0.7433 0.8787 0.7630

Precisionmicro 0.7197 0.7611 0.6885 0.7613 0.5906 0.7519 0.8796 0.7696

Precisionmacro 0.6511 0.7016 0.6223 0.7018 0.4528 0.6887 0.8830 0.7126

Recallweighted 0.7197 0.7611 0.6885 0.7613 0.5906 0.7519 0.8796 0.7696

Recallmicro 0.7197 0.7611 0.6885 0.7613 0.5906 0.7519 0.8796 0.7696

Recallmacro 0.6138 0.6874 0.5580 0.6896 0.4331 0.6709 0.8474 0.7011

F1group0 0.6396 0.7296 0.6116 0.7302 0.4247 0.7115 0.8614 0.7410

F1group1 0.4036 0.5025 0.2986 0.5057 0.0946 0.4759 0.7968 0.5261

F1group2 0.8123 0.8445 0.7919 0.8447 0.7237 0.8386 0.9160 0.8496

Rel. Supportgroup0 0.2521 0.2521 0.2521 0.2521 0.2521 0.2521 0.2521 0.2521

Rel. Supportgroup1 0.1735 0.1735 0.1735 0.1735 0.1735 0.1735 0.1735 0.1735

Rel. Supportgroup2 0.5744 0.5744 0.5744 0.5744 0.5744 0.5744 0.5744 0.5744

Mean Median Min Max

Target attribute Target attribute Target attribute Target attribute

CrossWalk node2vec CrossWalk node2vec CrossWalk node2vec CrossWalk node2vec

F1weighted 0.7254 0.7633 0.7248 0.7636 0.6851 0.7556 0.7613 0.7689

F1macro 0.7511 0.7891 0.7518 0.7896 0.7045 0.7814 0.7866 0.7960

F1micro 0.7254 0.7633 0.7248 0.7637 0.6856 0.7556 0.7608 0.7688

Acc. 0.7254 0.7633 0.7248 0.7637 0.6856 0.7556 0.7608 0.7688

Var. 0.0017 0.0016 0.0016 0.0016 0.0007 0.0013 0.0030 0.0021

Precisionweighted 0.7259 0.7637 0.7253 0.7640 0.6854 0.7558 0.7622 0.7692

Precisionmicro 0.7254 0.7633 0.7248 0.7637 0.6856 0.7556 0.7608 0.7688

Precisionmacro 0.7528 0.7889 0.7536 0.7892 0.7088 0.7813 0.7841 0.7956

Recallweighted 0.7254 0.7633 0.7248 0.7637 0.6856 0.7556 0.7608 0.7688

Recallmicro 0.7254 0.7633 0.7248 0.7637 0.6856 0.7556 0.7608 0.7688

Recallmacro 0.7499 0.7897 0.7507 0.7906 0.6989 0.7817 0.7896 0.7968

F1group0 0.6407 0.6886 0.6380 0.6893 0.5952 0.6759 0.6889 0.6991

F1group1 0.6306 0.6729 0.6298 0.6731 0.5873 0.6573 0.6756 0.6866

F1group2 0.8111 0.8558 0.8168 0.8569 0.7239 0.8400 0.8562 0.8689

F1group3 0.9218 0.9392 0.9236 0.9395 0.8876 0.9310 0.9400 0.9437

Rel. Supportgroup0 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300

Rel. Supportgroup1 0.3215 0.3215 0.3215 0.3215 0.3215 0.3215 0.3215 0.3215

Rel. Supportgroup2 0.0906 0.0906 0.0906 0.0906 0.0906 0.0906 0.0906 0.0906

Rel. Supportgroup3 0.2579 0.2579 0.2579 0.2579 0.2579 0.2579 0.2579 0.2579

Table 7.7: Results of a classification with a 50% training-set and five-fold cross-validation on the Semi-

distinct sub-graph (b)

Mean Median Min Max

Sensitive attribute Sensitive attribute Sensitive attribute Sensitive attribute

CrossWalk node2vec CrossWalk node2vec CrossWalk node2vec CrossWalk node2vec

F1weighted 0.7135 0.7701 0.6917 0.7699 0.5533 0.7577 0.8980 0.7785

F1macro 0.6392 0.7094 0.6100 0.7093 0.4312 0.6931 0.8765 0.7204

F1micro 0.7310 0.7741 0.7105 0.7741 0.5797 0.7643 0.9000 0.7825

Acc. 0.7310 0.7741 0.7105 0.7741 0.5797 0.7643 0.9000 0.7825

Var. 0.0022 0.0004 0.0020 0.0004 0.0001 0.0002 0.0091 0.0009

Precisionweighted 0.7097 0.7687 0.6936 0.7685 0.5374 0.7551 0.9005 0.7770

Precisionmicro 0.7310 0.7741 0.7105 0.7741 0.5797 0.7643 0.9000 0.7825

Precisionmacro 0.6636 0.7171 0.6529 0.7174 0.4428 0.7068 0.9034 0.7277

Recallweighted 0.7310 0.7741 0.7105 0.7741 0.5797 0.7643 0.9000 0.7825

Recallmicro 0.7310 0.7741 0.7105 0.7741 0.5797 0.7643 0.9000 0.7825

Recallmacro 0.6354 0.7060 0.5989 0.7064 0.4417 0.6845 0.8619 0.7186

F1group0 0.6618 0.7447 0.6487 0.7442 0.4448 0.7292 0.8795 0.7574

F1group1 0.4358 0.5295 0.3750 0.5305 0.0981 0.4995 0.8249 0.5579

F1group2 0.8200 0.8539 0.8065 0.8540 0.7198 0.8470 0.9315 0.8600

Rel. Supportgroup0 0.2519 0.2519 0.2519 0.2519 0.2519 0.2519 0.2519 0.2519

Rel. Supportgroup1 0.1735 0.1735 0.1735 0.1735 0.1735 0.1735 0.1735 0.1735

Rel. Supportgroup2 0.5745 0.5745 0.5745 0.5745 0.5745 0.5745 0.5745 0.5745

NaN NaN

Mean Median Min Max

Target attribute Target attribute Target attribute Target attribute

CrossWalk node2vec CrossWalk node2vec CrossWalk node2vec CrossWalk node2vec

F1weighted 0.7351 0.7712 0.7346 0.7713 0.6977 0.7612 0.7705 0.7788

F1macro 0.7598 0.7959 0.7603 0.7959 0.7159 0.7876 0.7952 0.8048

F1micro 0.7351 0.7712 0.7346 0.7713 0.6975 0.7612 0.7705 0.7786

Acc. 0.7351 0.7712 0.7346 0.7713 0.6975 0.7612 0.7705 0.7786

Var. 0.0019 0.0017 0.0019 0.0017 0.0007 0.0010 0.0033 0.0024

Precisionweighted 0.7357 0.7720 0.7352 0.7720 0.6988 0.7619 0.7718 0.7799

Precisionmicro 0.7351 0.7712 0.7346 0.7713 0.6975 0.7612 0.7705 0.7786

Precisionmacro 0.7611 0.7958 0.7617 0.7961 0.7184 0.7866 0.7946 0.8044

Recallweighted 0.7351 0.7712 0.7346 0.7713 0.6975 0.7612 0.7705 0.7786

Recallmicro 0.7351 0.7712 0.7346 0.7713 0.6975 0.7612 0.7705 0.7786

Recallmacro 0.7590 0.7968 0.7596 0.7968 0.7143 0.7874 0.7981 0.8089

F1group0 0.6587 0.7030 0.6566 0.7034 0.6186 0.6894 0.7081 0.7124

F1group1 0.6383 0.6796 0.6368 0.6800 0.5870 0.6625 0.6858 0.6947

F1group2 0.8174 0.8594 0.8217 0.8601 0.7356 0.8357 0.8694 0.8777

F1group3 0.9247 0.9416 0.9260 0.9417 0.8934 0.9332 0.9449 0.9483

Rel. Supportgroup0 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300

Rel. Supportgroup1 0.3215 0.3215 0.3215 0.3215 0.3215 0.3215 0.3215 0.3215

Rel. Supportgroup2 0.0906 0.0906 0.0906 0.0906 0.0906 0.0906 0.0906 0.0906

Rel. Supportgroup3 0.2579 0.2579 0.2579 0.2579 0.2579 0.2579 0.2579 0.2579

Table 7.8: Results of a classification with a 75% training-set and five-fold cross-validation on the Semi-

distinct sub-graph (b)

58

Mean Median Min Max

Sensitive attribute Sensitive attribute Sensitive attribute Sensitive attribute

CrossWalk node2vec CrossWalk node2vec CrossWalk node2vec CrossWalk node2vec

F1weighted 0.6842 0.7340 0.6682 0.7345 0.5911 0.7233 0.8254 0.7414

F1macro 0.4809 0.5660 0.4493 0.5667 0.3705 0.5526 0.7189 0.5765

F1micro 0.7167 0.7509 0.7088 0.7515 0.5970 0.7374 0.8327 0.7592

Acc. 0.7167 0.7509 0.7088 0.7515 0.5970 0.7374 0.8327 0.7592

Var. 0.0012 0.0006 0.0013 0.0006 0.0001 0.0003 0.0028 0.0011

Precisionweighted 0.6758 0.7272 0.6595 0.7272 0.5952 0.7198 0.8234 0.7343

Precisionmicro 0.7167 0.7509 0.7088 0.7515 0.5970 0.7374 0.8327 0.7592

Precisionmacro 0.5258 0.5826 0.5074 0.5835 0.3881 0.5661 0.7462 0.5963

Recallweighted 0.7167 0.7509 0.7088 0.7515 0.5970 0.7374 0.8327 0.7592

Recallmicro 0.7167 0.7509 0.7088 0.7515 0.5970 0.7374 0.8327 0.7592

Recallmacro 0.4806 0.5701 0.4442 0.5701 0.3827 0.5568 0.7035 0.5801

F1group0 0.4095 0.5792 0.3772 0.5805 0.2286 0.5538 0.7151 0.5955

F1group1 0.2007 0.2606 0.1396 0.2601 0.0783 0.2388 0.5377 0.2841

F1group2 0.8326 0.8582 0.8290 0.8588 0.7467 0.8476 0.9040 0.8645

Rel. Supportgroup0 0.1337 0.1337 0.1337 0.1337 0.1337 0.1337 0.1337 0.1337

Rel. Supportgroup1 0.1453 0.1453 0.1453 0.1453 0.1453 0.1453 0.1453 0.1453

Rel. Supportgroup2 0.7210 0.7210 0.7210 0.7210 0.7210 0.7210 0.7210 0.7210

Mean Median Min Max

Target attribute Target attribute Target attribute Target attribute

CrossWalk node2vec CrossWalk node2vec CrossWalk node2vec CrossWalk node2vec

F1weighted 0.3373 0.3819 0.3327 0.3823 0.3084 0.3738 0.3778 0.3905

F1macro 0.2703 0.3166 0.2659 0.3169 0.2358 0.3042 0.3199 0.3313

F1micro 0.3461 0.3945 0.3407 0.3946 0.3130 0.3827 0.3903 0.4027

Acc. 0.3461 0.3945 0.3407 0.3946 0.3130 0.3827 0.3903 0.4027

Var. 0.0014 0.0030 0.0010 0.0030 0.0000 0.0023 0.0048 0.0038

Precisionweighted 0.3376 0.3842 0.3324 0.3839 0.3066 0.3766 0.3794 0.3925

Precisionmicro 0.3461 0.3945 0.3407 0.3946 0.3130 0.3827 0.3903 0.4027

Precisionmacro 0.2881 0.3446 0.2807 0.3445 0.2465 0.3256 0.3548 0.3659

Recallweighted 0.3461 0.3945 0.3407 0.3946 0.3130 0.3827 0.3903 0.4027

Recallmicro 0.3461 0.3945 0.3407 0.3946 0.3130 0.3827 0.3903 0.4027

Recallmacro 0.2662 0.3088 0.2625 0.3092 0.2359 0.2978 0.3090 0.3199

F1group0 0.4506 0.5037 0.4456 0.5036 0.4051 0.4899 0.5020 0.5146

F1group1 0.2948 0.3187 0.2945 0.3193 0.2492 0.2944 0.3391 0.3440

F1group2 0.2233 0.3230 0.2149 0.3244 0.1603 0.2844 0.3200 0.3480

F1group3 0.2873 0.3168 0.2869 0.3170 0.2425 0.3014 0.3357 0.3352

F1group4 0.0954 0.1207 0.0929 0.1229 0.0348 0.0845 0.1770 0.1669

Rel. Supportgroup0 0.3696 0.3696 0.3696 0.3696 0.3696 0.3696 0.3696 0.3696

Rel. Supportgroup1 0.2516 0.2516 0.2516 0.2516 0.2516 0.2516 0.2516 0.2516

Rel. Supportgroup2 0.1126 0.1126 0.1126 0.1126 0.1126 0.1126 0.1126 0.1126

Rel. Supportgroup3 0.2401 0.2401 0.2401 0.2401 0.2401 0.2401 0.2401 0.2401

Rel. Supportgroup4 0.0261 0.0261 0.0261 0.0261 0.0261 0.0261 0.0261 0.0261

Table 7.9: Results of a classification with a 10% training-set and five-fold cross-validation on the

Mixed sub-graph (c)

Mean Median Min Max

Sensitive attribute Sensitive attribute Sensitive attribute Sensitive attribute

CrossWalk node2vec CrossWalk node2vec CrossWalk node2vec CrossWalk node2vec

F1weighted 0.7323 0.7703 0.7184 0.7706 0.6542 0.7608 0.8408 0.7758

F1macro 0.5518 0.6231 0.5260 0.6233 0.4231 0.6098 0.7445 0.6306

F1micro 0.7629 0.7830 0.7494 0.7835 0.6916 0.7703 0.8473 0.7890

Acc. 0.7629 0.7830 0.7494 0.7835 0.6916 0.7703 0.8473 0.7890

Var. 0.0012 0.0005 0.0013 0.0005 0.0001 0.0002 0.0029 0.0009

Precisionweighted 0.7237 0.7633 0.7075 0.7634 0.6356 0.7555 0.8387 0.7686

Precisionmicro 0.7629 0.7830 0.7494 0.7835 0.6916 0.7703 0.8473 0.7890

Precisionmacro 0.6055 0.6417 0.5803 0.6421 0.4615 0.6267 0.7780 0.6532

Recallweighted 0.7629 0.7830 0.7494 0.7835 0.6916 0.7703 0.8473 0.7890

Recallmicro 0.7629 0.7830 0.7494 0.7835 0.6916 0.7703 0.8473 0.7890

Recallmacro 0.5369 0.6153 0.5085 0.6157 0.4210 0.6051 0.7275 0.6218

F1group0 0.5190 0.6466 0.5019 0.6470 0.3163 0.6217 0.7545 0.6593

F1group1 0.2716 0.3434 0.2141 0.3436 0.1023 0.3232 0.5698 0.3567

F1group2 0.8648 0.8793 0.8590 0.8796 0.8189 0.8702 0.9126 0.8834

Rel. Supportgroup0 0.1337 0.1337 0.1337 0.1337 0.1337 0.1337 0.1337 0.1337

Rel. Supportgroup1 0.1453 0.1453 0.1453 0.1453 0.1453 0.1453 0.1453 0.1453

Rel. Supportgroup2 0.7210 0.7210 0.7210 0.7210 0.7210 0.7210 0.7210 0.7210

Mean Median Min Max

Target attribute Target attribute Target attribute Target attribute

CrossWalk node2vec CrossWalk node2vec CrossWalk node2vec CrossWalk node2vec

F1weighted 0.3712 0.4206 0.3668 0.4206 0.3379 0.4133 0.4154 0.4259

F1macro 0.3115 0.3663 0.3069 0.3667 0.2692 0.3542 0.3647 0.3752

F1micro 0.3765 0.4268 0.3718 0.4274 0.3446 0.4199 0.4223 0.4328

Acc. 0.3765 0.4268 0.3718 0.4274 0.3446 0.4199 0.4223 0.4328

Var. 0.0027 0.0046 0.0024 0.0046 0.0004 0.0038 0.0065 0.0058

Precisionweighted 0.3709 0.4204 0.3668 0.4205 0.3356 0.4140 0.4158 0.4261

Precisionmicro 0.3765 0.4268 0.3718 0.4274 0.3446 0.4199 0.4223 0.4328

Precisionmacro 0.3307 0.3888 0.3251 0.3893 0.2804 0.3660 0.3902 0.4083

Recallweighted 0.3765 0.4268 0.3718 0.4274 0.3446 0.4199 0.4223 0.4328

Recallmicro 0.3765 0.4268 0.3718 0.4274 0.3446 0.4199 0.4223 0.4328

Recallmacro 0.3030 0.3554 0.2990 0.3556 0.2655 0.3453 0.3521 0.3608

F1group0 0.4701 0.5216 0.4657 0.5215 0.4354 0.5134 0.5196 0.5278

F1group1 0.3305 0.3625 0.3294 0.3628 0.2919 0.3489 0.3738 0.3763

F1group2 0.2946 0.4019 0.2853 0.4023 0.2309 0.3811 0.3925 0.4153

F1group3 0.3225 0.3603 0.3217 0.3603 0.2785 0.3499 0.3618 0.3719

F1group4 0.1398 0.1850 0.1369 0.1857 0.0668 0.1509 0.2195 0.2253

Rel. Supportgroup0 0.3697 0.3697 0.3697 0.3697 0.3697 0.3697 0.3697 0.3697

Rel. Supportgroup1 0.2516 0.2516 0.2516 0.2516 0.2516 0.2516 0.2516 0.2516

Rel. Supportgroup2 0.1126 0.1126 0.1126 0.1126 0.1126 0.1126 0.1126 0.1126

Rel. Supportgroup3 0.2401 0.2401 0.2401 0.2401 0.2401 0.2401 0.2401 0.2401

Rel. Supportgroup4 0.0260 0.0260 0.0260 0.0260 0.0260 0.0260 0.0260 0.0260

Table 7.10: Results of a classification with a 25% training-set and five-fold cross-validation on the

Mixed sub-graph (c)

59

7 Appendix

Mean Median Min Max

Sensitive attribute Sensitive attribute Sensitive attribute Sensitive attribute

CrossWalk node2vec CrossWalk node2vec CrossWalk node2vec CrossWalk node2vec

F1weighted 0.7588 0.7904 0.7461 0.7906 0.6792 0.7819 0.8759 0.7945

F1macro 0.5956 0.6533 0.5736 0.6532 0.4532 0.6433 0.8028 0.6611

F1micro 0.7845 0.8033 0.7696 0.8034 0.7267 0.7907 0.8813 0.8076

Acc. 0.7845 0.8033 0.7696 0.8034 0.7267 0.7907 0.8813 0.8076

Var. 0.0011 0.0004 0.0010 0.0004 0.0001 0.0002 0.0027 0.0008

Precisionweighted 0.7516 0.7841 0.7375 0.7843 0.6627 0.7763 0.8767 0.7886

Precisionmicro 0.7845 0.8033 0.7696 0.8034 0.7267 0.7907 0.8813 0.8076

Precisionmacro 0.6479 0.6799 0.6209 0.6805 0.5137 0.6607 0.8501 0.6879

Recallweighted 0.7845 0.8033 0.7696 0.8034 0.7267 0.7907 0.8813 0.8076

Recallmicro 0.7845 0.8033 0.7696 0.8034 0.7267 0.7907 0.8813 0.8076

Recallmacro 0.5759 0.6388 0.5523 0.6385 0.4443 0.6321 0.7693 0.6451

F1group0 0.5847 0.6844 0.5738 0.6842 0.3839 0.6672 0.8080 0.6965

F1group1 0.3230 0.3833 0.2685 0.3833 0.1189 0.3693 0.6706 0.4091

F1group2 0.8790 0.8921 0.8724 0.8924 0.8441 0.8843 0.9299 0.8954

Rel. Supportgroup0 0.1337 0.1337 0.1337 0.1337 0.1337 0.1337 0.1337 0.1337

Rel. Supportgroup1 0.1454 0.1454 0.1454 0.1454 0.1454 0.1454 0.1454 0.1454

Rel. Supportgroup2 0.7209 0.7209 0.7209 0.7209 0.7209 0.7209 0.7209 0.7209

Mean Median Min Max

Target attribute Target attribute Target attribute Target attribute

CrossWalk node2vec CrossWalk node2vec CrossWalk node2vec CrossWalk node2vec

F1weighted 0.4032 0.4529 0.3996 0.4530 0.3670 0.4453 0.4479 0.4610

F1macro 0.3482 0.4055 0.3443 0.4057 0.3006 0.3967 0.4010 0.4129

F1micro 0.4094 0.4586 0.4058 0.4586 0.3749 0.4509 0.4523 0.4673

Acc. 0.4094 0.4586 0.4058 0.4586 0.3749 0.4509 0.4523 0.4673

Var. 0.0038 0.0053 0.0037 0.0053 0.0007 0.0043 0.0075 0.0065

Precisionweighted 0.4050 0.4543 0.4016 0.4545 0.3660 0.4453 0.4487 0.4633

Precisionmicro 0.4094 0.4586 0.4058 0.4586 0.3749 0.4509 0.4523 0.4673

Precisionmacro 0.3845 0.4403 0.3814 0.4402 0.3238 0.4206 0.4429 0.4523

Recallweighted 0.4094 0.4586 0.4058 0.4586 0.3749 0.4509 0.4523 0.4673

Recallmicro 0.4094 0.4586 0.4058 0.4586 0.3749 0.4509 0.4523 0.4673

Recallmacro 0.3336 0.3890 0.3296 0.3891 0.2923 0.3827 0.3855 0.3963

F1group0 0.5005 0.5469 0.4968 0.5472 0.4708 0.5380 0.5420 0.5596

F1group1 0.3589 0.3972 0.3574 0.3973 0.3182 0.3815 0.3994 0.4089

F1group2 0.3511 0.4504 0.3438 0.4510 0.2721 0.4330 0.4462 0.4642

F1group3 0.3484 0.3905 0.3470 0.3902 0.2988 0.3809 0.3922 0.4010

F1group4 0.1821 0.2423 0.1790 0.2415 0.0943 0.2137 0.2622 0.2744

Rel. Supportgroup0 0.3697 0.3697 0.3697 0.3697 0.3697 0.3697 0.3697 0.3697

Rel. Supportgroup1 0.2517 0.2517 0.2517 0.2517 0.2517 0.2517 0.2517 0.2517

Rel. Supportgroup2 0.1126 0.1126 0.1126 0.1126 0.1126 0.1126 0.1126 0.1126

Rel. Supportgroup3 0.2401 0.2401 0.2401 0.2401 0.2401 0.2401 0.2401 0.2401

Rel. Supportgroup4 0.0260 0.0260 0.0260 0.0260 0.0260 0.0260 0.0260 0.0260

Table 7.11: Results of a classification with a 50% training-set and five-fold cross-validation on the

Mixed sub-graph (c)

Mean Median Min Max

Sensitive attribute Sensitive attribute Sensitive attribute Sensitive attribute

CrossWalk node2vec CrossWalk node2vec CrossWalk node2vec CrossWalk node2vec

F1weighted 0.7725 0.7981 0.7599 0.7981 0.6898 0.7917 0.8929 0.8040

F1macro 0.6205 0.6668 0.6007 0.6668 0.4700 0.6571 0.8300 0.6757

F1micro 0.7937 0.8095 0.7791 0.8095 0.7332 0.7983 0.8969 0.8150

Acc. 0.7937 0.8095 0.7791 0.8095 0.7332 0.7983 0.8969 0.8150

Var. 0.0011 0.0005 0.0010 0.0004 0.0001 0.0001 0.0040 0.0013

Precisionweighted 0.7652 0.7925 0.7515 0.7924 0.6749 0.7860 0.8938 0.7987

Precisionmicro 0.7937 0.8095 0.7791 0.8095 0.7332 0.7983 0.8969 0.8150

Precisionmacro 0.6628 0.6903 0.6386 0.6904 0.5263 0.6766 0.8709 0.7014

Recallweighted 0.7937 0.8095 0.7791 0.8095 0.7332 0.7983 0.8969 0.8150

Recallmicro 0.7937 0.8095 0.7791 0.8095 0.7332 0.7983 0.8969 0.8150

Recallmacro 0.6026 0.6540 0.5842 0.6538 0.4601 0.6448 0.8003 0.6609

F1group0 0.6204 0.6999 0.6160 0.7001 0.4184 0.6799 0.8275 0.7121

F1group1 0.3564 0.4049 0.3071 0.4045 0.1291 0.3877 0.7324 0.4278

F1group2 0.8847 0.8957 0.8779 0.8956 0.8500 0.8875 0.9392 0.9000

Rel. Supportgroup0 0.1337 0.1337 0.1337 0.1337 0.1337 0.1337 0.1337 0.1337

Rel. Supportgroup1 0.1454 0.1454 0.1454 0.1454 0.1454 0.1454 0.1454 0.1454

Rel. Supportgroup2 0.7209 0.7209 0.7209 0.7209 0.7209 0.7209 0.7209 0.7209

Mean Median Min Max

Target attribute Target attribute Target attribute Target attribute

CrossWalk node2vec CrossWalk node2vec CrossWalk node2vec CrossWalk node2vec

F1weighted 0.4212 0.4702 0.4174 0.4707 0.3797 0.4605 0.4651 0.4766

F1macro 0.3685 0.4248 0.3646 0.4254 0.3202 0.4060 0.4238 0.4353

F1micro 0.4294 0.4771 0.4258 0.4777 0.3919 0.4691 0.4718 0.4837

Acc. 0.4294 0.4771 0.4258 0.4777 0.3919 0.4691 0.4718 0.4837

Var. 0.0043 0.0057 0.0043 0.0057 0.0008 0.0039 0.0080 0.0073

Precisionweighted 0.4262 0.4744 0.4229 0.4745 0.3837 0.4637 0.4695 0.4815

Precisionmicro 0.4294 0.4771 0.4258 0.4777 0.3919 0.4691 0.4718 0.4837

Precisionmacro 0.4243 0.4746 0.4236 0.4749 0.3612 0.4473 0.4839 0.4944

Recallweighted 0.4294 0.4771 0.4258 0.4777 0.3919 0.4691 0.4718 0.4837

Recallmicro 0.4294 0.4771 0.4258 0.4777 0.3919 0.4691 0.4718 0.4837

Recallmacro 0.3496 0.4040 0.3455 0.4044 0.3064 0.3895 0.4016 0.4146

F1group0 0.5215 0.5638 0.5182 0.5638 0.4897 0.5529 0.5640 0.5752

F1group1 0.3720 0.4150 0.3705 0.4169 0.3284 0.3920 0.4162 0.4331

F1group2 0.3819 0.4727 0.3756 0.4727 0.3057 0.4533 0.4731 0.4872

F1group3 0.3600 0.4050 0.3587 0.4053 0.2975 0.3890 0.4092 0.4201

F1group4 0.2071 0.2678 0.2053 0.2709 0.1074 0.1918 0.3108 0.3103

Supportrel.group0 0.3697 0.3697 0.3697 0.3697 0.3697 0.3697 0.3697 0.3697

Rel. Supportgroup1 0.2516 0.2516 0.2516 0.2516 0.2516 0.2516 0.2516 0.2516

Rel. Supportgroup2 0.1126 0.1126 0.1126 0.1126 0.1126 0.1126 0.1126 0.1126

Rel. Supportgroup3 0.2401 0.2401 0.2401 0.2401 0.2401 0.2401 0.2401 0.2401

Rel. Supportgroup4 0.0261 0.0261 0.0261 0.0261 0.0261 0.0261 0.0261 0.0261

Table 7.12: Results of a classification with a 75% training-set and five-fold cross-validation on the

Mixed sub-graph (c)

60

61

7 Appendix

62

Bibliography
[BH19] Avishek Bose andWilliam Hamilton. Compositional Fairness Constraints for

Graph Embeddings. In Kamalika Chaudhuri and Ruslan Salakhutdinov, ed-

itors, Proceedings of the 36th International Conference on Machine Learning, volume 97

of Proceedings of Machine Learning Research, pages 715–724. PMLR, 09–15 Jun

2019. URL: https://proceedings.mlr.press/v97/bose19a.html.

[CH20] Simon Caton and Christian Haas. Fairness in Machine Learning: A Sur-

vey, 2020. URL: https://arxiv.org/abs/2010.04053, doi:10.48550/
ARXIV.2010.04053.

[CLL22] Manvi Choudhary, Charlotte Laclau, and Christine Largeron. A Survey on

Fairness for Machine Learning on [graphs], 2022. URL: https://arxiv.org/

abs/2205.05396, doi:10.48550/ARXIV.2205.05396.

[CN06] Gabor Csardi and Tamas Nepusz. The igraph software package for complex

network research. InterJournal, Complex Systems:1695, 2006. URL: https:

//igraph.org.

[Coh18] Elior Cohen. node2vec: Python3 implementation of the node2vec algorithm

based on node2vec: Scalable Feature Learning for Networks. A. Grover, J.

Leskovec. ACM SIGKDD International Conference on Knowledge Discov-

ery and Data Mining (KDD), 2016. https://github.com/eliorc/node2vec,

2018.

[Fac04] Facebook Inc. Facebook, 2004. URL: https://www.facebook.com/.

[GL16] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for

networks. In Proceedings of the 22nd ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 855–864, 2016. doi:10.1145/
2939672.2939754.

[HGER+12] Keith Henderson, Brian Gallagher, Tina Eliassi-Rad, Hanghang Tong, Sug-

ato Basu, Leman Akoglu, Danai Koutra, Christos Faloutsos, and Lei Li.

Rolx: structural role extraction & mining in large graphs. In Proceedings

of the 18th ACM SIGKDD international conference on Knowledge discovery and data

mining, pages 1231–1239, 2012. URL: http://briangallagher.net/pubs/

henderson-etal-kdd2012.pdf.

63

https://proceedings.mlr.press/v97/bose19a.html
https://arxiv.org/abs/2010.04053
https://doi.org/10.48550/ARXIV.2010.04053
https://doi.org/10.48550/ARXIV.2010.04053
https://arxiv.org/abs/2205.05396
https://arxiv.org/abs/2205.05396
https://doi.org/10.48550/ARXIV.2205.05396
https://igraph.org
https://igraph.org
https://github.com/eliorc/node2vec
https://www.facebook.com/
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2939672.2939754
http://briangallagher.net/pubs/henderson-etal-kdd2012.pdf
http://briangallagher.net/pubs/henderson-etal-kdd2012.pdf

Bibliography

[HL13] Pili Hu andWing Cheong Lau. A Survey and Taxonomy of Graph Sampling,

2013. URL: https://arxiv.org/abs/1308.5865, doi:10.48550/ARXIV.
1308.5865.

[HM15] MohammadHossin and SulaimanM.N. A Review on EvaluationMetrics for

Data Classification Evaluations. International Journal of Data Mining & Knowl-

edge Management Process, 5:01–11, 03 2015. doi:10.5121/ijdkp.2015.
5201.

[HYL17] William L. Hamilton, Rex Ying, and Jure Leskovec. Representation

Learning on Graphs: Methods and Applications. CoRR, abs/1709.05584,

2017. URL: http://arxiv.org/abs/1709.05584, arXiv:1709.05584,
doi:10.48550/ARXIV.1709.05584.

[ITAC19] Ahmet Iscen, Giorgos Tolias, Yannis Avrithis, and Ondrej Chum. Label

Propagation for Deep Semi-Supervised Learning. Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), June 2019. URL:

https://openaccess.thecvf.com/content_CVPR_2019/html/Iscen_Label_

Propagation_for_Deep_Semi-Supervised_Learning_CVPR_2019_paper.

html.

[JWHT13] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An

Introduction to Statistical Learning, volume 112. Springer, 2013.

[KBŠBŠ20] Damir Krstinić, Maja Braović, Ljiljana Šerić, and Dunja Božić-Štulić. Multi-

label classifier performance evaluation with confusion matrix. Comput Sci Inf

Technol, 10:1–14, 2020. doi:DOI:10.5121/csit.2020.100801.

[Kha21] Ahmad Khajehnejad. CrossWalk: Source code and data used for the Cross-

Walk paper. https://github.com/ahmadkhajehnejad/CrossWalk, 2021.

[KKB+22] Ahmad Khajehnejad, Moein Khajehnejad, Mahmoudreza Babaei, Kr-

ishna P. Gummadi, Adrian Weller, and Baharan Mirzasoleiman. Cross-

Walk: Fairness-Enhanced Node Representation Learning. Proceedings

of the AAAI Conference on Artificial Intelligence, 36(11):11963–11970, June

2022. URL: https://ojs.aaai.org/index.php/AAAI/article/view/21454,

doi:10.1609/aaai.v36i11.21454.

[KKBK21] Matthias Kuppler, Christoph Kern, Ruben L. Bach, and Frauke Kreuter.

Distributive Justice and Fairness Metrics in Automated Decision-making:

How Much Overlap Is There?, 2021. URL: https://arxiv.org/abs/2105.

01441, doi:10.48550/ARXIV.2105.01441.

64

https://arxiv.org/abs/1308.5865
https://doi.org/10.48550/ARXIV.1308.5865
https://doi.org/10.48550/ARXIV.1308.5865
https://doi.org/10.5121/ijdkp.2015.5201
https://doi.org/10.5121/ijdkp.2015.5201
http://arxiv.org/abs/1709.05584
http://arxiv.org/abs/1709.05584
https://doi.org/10.48550/ARXIV.1709.05584
https://openaccess.thecvf.com/content_CVPR_2019/html/Iscen_Label_Propagation_for_Deep_Semi-Supervised_Learning_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Iscen_Label_Propagation_for_Deep_Semi-Supervised_Learning_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Iscen_Label_Propagation_for_Deep_Semi-Supervised_Learning_CVPR_2019_paper.html
https://doi.org/DOI: 10.5121/csit.2020.100801
https://github.com/ahmadkhajehnejad/CrossWalk
https://ojs.aaai.org/index.php/AAAI/article/view/21454
https://doi.org/10.1609/aaai.v36i11.21454
https://arxiv.org/abs/2105.01441
https://arxiv.org/abs/2105.01441
https://doi.org/10.48550/ARXIV.2105.01441

Bibliography

[KLPS12] Gang Kou, YANQUN LU, Yi Peng, and Yong Shi. Evaluation of classi-

fication algorithms using MCDM and rank correlation. International Journal

of Information Technology & Decision Making, 11, 04 2012. doi:10.1142/
S0219622012500095.

[LK14] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford Large Network

Dataset Collection. http://snap.stanford.edu/data, Jun 2014.

[LL10] Gregory F Lawler and Vlada Limic. Random walk: a modern introduction, volume

123. Cambridge University Press, 2010.

[LRKS18] Joshua R. Loftus, Chris Russell, Matt J. Kusner, and Ricardo Silva. Causal

Reasoning for Algorithmic Fairness, 2018. URL: https://arxiv.org/abs/

1805.05859, doi:10.48550/ARXIV.1805.05859.

[MBW+19] Pankaj Mehta, Marin Bukov, Ching-Hao Wang, Alexandre GR Day, Clint

Richardson, Charles K Fisher, and David J Schwab. A high-bias, low-

variance introduction to machine learning for physicists. Physics reports,

810:1–124, 2019. doi:https://doi.org/10.1016/j.physrep.
2019.03.001.

[MCC+03] Peter R Monge, Noshir S Contractor, Peter S Contractor, R Peter, S Noshir,

et al. Theories of Communication Networks. Oxford University Press, USA, 2003.

[MCCD13] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient

Estimation of Word Representations in Vector Space, 2013. URL: https:

//arxiv.org/abs/1301.3781, doi:10.48550/ARXIV.1301.3781.

[PARS14] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learn-

ing of social representations. In Proceedings of the 20th ACM SIGKDD inter-

national conference on Knowledge discovery and data mining, pages 701–710, 2014.

doi:https://doi.org/10.1145/2623330.2623732.

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-

sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-

learn: Machine Learning in Python. Journal of Machine Learning Re-

search, 12:2825–2830, 2011. URL: https://www.jmlr.org/papers/volume12/

pedregosa11a/pedregosa11a.pdf.

[RSBZ19] Tahleen Rahman, Bartlomiej Surma, Michael Backes, and Yang Zhang.

Fairwalk: Towards fair graph embedding. International Joint Conference on Ar-

tificial Intelligence (IJCAI), 2019. URL: https://publications.cispa.saarland/

65

https://doi.org/10.1142/S0219622012500095
https://doi.org/10.1142/S0219622012500095
http://snap.stanford.edu/data
https://arxiv.org/abs/1805.05859
https://arxiv.org/abs/1805.05859
https://doi.org/10.48550/ARXIV.1805.05859
https://doi.org/https://doi.org/10.1016/j.physrep.2019.03.001
https://doi.org/https://doi.org/10.1016/j.physrep.2019.03.001
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://doi.org/10.48550/ARXIV.1301.3781
https://doi.org/https://doi.org/10.1145/2623330.2623732
https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
https://publications.cispa.saarland/2933/
https://publications.cispa.saarland/2933/
https://publications.cispa.saarland/2933/

Bibliography

2933/.

[SSBD14] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From

theory to algorithms. Cambridge university press, 2014.

[TMKM18] Anton Tsitsulin, Davide Mottin, Panagiotis Karras, and Emmanuel Müller.

Verse: Versatile graph embeddings from similarity measures. In Proceedings

of the 2018 world wide web conference, pages 539–548, 2018. doi:10.1145/
3178876.3186120.

[TZ12] Lubos Takac and Michal Zabovsky. Data analysis in public social networks.

In International scientific conference and international workshop present day trends of in-

novations, volume 1. Present Day Trends of Innovations Lamza Poland, 2012.

URL: http://snap.stanford.edu/data/soc-pokec.pdf.

[VR18] Sahil Verma and Julia Rubin. Fairness Definitions Explained. In 2018

IEEE/ACM International Workshop on Software Fairness (FairWare), pages 1–7.

IEEE, 2018. doi:10.1145/3194770.3194776.

[WCA+16] Yanhong Wu, Nan Cao, Daniel Archambault, Qiaomu Shen, Huamin Qu,

and Weiwei Cui. Evaluation of graph sampling: A visualization perspec-

tive. IEEE transactions on visualization and computer graphics, 23(1):401–410, 2016.

doi:10.1109/TVCG.2016.2598867.

[Wig19] Avi Wigderson. Mathematics and Computation. Princeton University Press, 2019.

[Xu21] Mengjia Xu. Understanding graph embedding methods and their applica-

tions. SIAM Review, 63(4):825–853, 2021. doi:10.1137/20M1386062.

[ZG02] Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled

data with label propagation, 2002. URL: http://mlg.eng.cam.ac.uk/zoubin/

papers/propagate.ps.gz.

[ZYZZ18] Daokun Zhang, Jie Yin, Xingquan Zhu, and Chengqi Zhang. Network rep-

resentation learning: A survey. IEEE transactions on Big Data, 6(1):3–28, 2018.

doi:10.1109/TBDATA.2018.2850013.

66

https://publications.cispa.saarland/2933/
https://publications.cispa.saarland/2933/
https://publications.cispa.saarland/2933/
https://publications.cispa.saarland/2933/
https://doi.org/10.1145/3178876.3186120
https://doi.org/10.1145/3178876.3186120
http://snap.stanford.edu/data/soc-pokec.pdf
https://doi.org/10.1145/3194770.3194776
https://doi.org/10.1109/TVCG.2016.2598867
https://doi.org/10.1137/20M1386062
http://mlg.eng.cam.ac.uk/zoubin/papers/propagate.ps.gz
http://mlg.eng.cam.ac.uk/zoubin/papers/propagate.ps.gz
https://doi.org/10.1109/TBDATA.2018.2850013

	List of Figures
	List of Tables
	Introduction
	Preliminaries and Assumptions
	Graph Representation
	Node Classification
	Fairness

	Related Work
	DeepWalk
	Node2vec
	CrossWalk

	Experimental Setup
	Data
	Implementation
	Hyperparameter
	Evaluation

	Results
	Results Overview
	Parameter Sensitivity

	Conclusion
	Appendix
	Bibliography

